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Introduction and motivations

We have been working with general weak lensing formulas
[Gallo Moreschi 2011, Boero 2017, Boero Moreschi 2018] in which optical scalars
are computed by taking into account the whole information of the lens curvature
and therefore of its energy-momentum tensor.

Lenses with angular momentum require a more subtle treatment in comparison
with most common static and spherically symmetric ones.

Expressions for the optical scalars and shear maps are rarely found in the
literature[Renzini et al. 2017]; instead a vast amount of works mainly focus on the
issue of obtaining an expression for the bending angle and the corresponding thin
lens equations [Aazami et al. 2011a, Aazami et al. 2011b]. Also interesting
perturbative approaches are found such as [Bozza et al. 2006].

Interest in the ray tracing techniques on black-holes with angular momentum in
numerical studies
[Beckwith Done 2005, James et al. 2015, Chen et al. 2015, Chan et al. 2018]

They has interest by itself at the light of the EHT collaboration announcements of
the SMBH in M87.
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Gravitational lensing I

The geodesic deviation equation for ςd :

`a∇a

(
`b∇bς

d
)

= R d
abc `aςb`c . (1)

A null tetrad (`a,ma, m̄a, na) adapted to the central geodesic of a thin bundle
leaving the source and reaching the observer

The geodesic deviation vector −→ ςa = ςm̄a + ς̄ma.

In components
d2

dλ2

(
ς

ς̄

)
= −

(
Φ00 Ψ0

Ψ̄0 Φ00

)(
ς

ς̄

)
; (2)

where the curvature scalars[Geroch 1973] are:

Φ00 = −1
2
Rab `

a `b , Ψ0 = Cabcd `
a mb `c md ; (3)

For black-holes Φ00 = 0 but Ψ0 6= 0.
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Gravitational lensing II

Exact weak lensing and standard weak lensing

The notion of the optical scalars optical scalars (κ, γ1, γ2, ω) comes from the
comparison between the non-lensing situation (i.e.: no gravity, and so flat
geometry) with respect to the lensing one, due to the curved nature of the
spacetime.

Exact solutions to the geodesic deviation equations provide us with a notion exact weak
lensing optical scalars, to which approximations can be applied.

Standard weak lensing is normally understood in terms of linear contribution caused by
the curvature of the lens.
In common situations the lens is also ‘thin’ and simple expressions arise
[Gallo Moreschi 2011, Boero Moreschi 2018]:

γ1 + iγ2 =
1 + zv
1 + zl

dlsdl
ds

∫ λs

0
Ψ0dλ. (4)
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Kerr black-holes
Kerr line element

ds2 = (1− Φ) dt2 + 2Φa sin2(θ) dtdφ− Σ∆−1 dr2 − Σ dθ2

−
(
r2 + a2 + Φa2 sin2(θ)

)
sin2(θ) dφ2;

(5)

Σ = r2 + a2 cos(θ)2, ∆ = r2 − 2rM + a2, Φ = 2MrΣ−1. (6)

It is type-D, so in a double principal null tetrad
(

˜̀, m̃, ¯̃m, ña
)
the curvature is just

Ψ̃2 = − M

(r − ia cos(θ))3
. (7)

Therefore, Ψ0 must to be proportional to Ψ̃2.

Geodesic equation allows enough first integrals −→ E , Lz ,K

So, given a frame (Ta,Xa,Ya,Za) these constants are related to the position and
to the angular coordinates (αx , δz) on the sky of the observer.

The construction of the most natural choice of frame in which Ya points to the
‘center’ is not a trivial task to accomplish.
We propose one based on the center of mass null congruence [Argañaraz 2019]
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Computation of the lens curvature scalar Ψ0 I

Relating Ψ̃2 with Ψ0

One is interested in Ψ0 along each null geodesic bundle.
The main difficulty being to build the tetrad adapted to the photon paths
(`a,ma, m̄a, na) reaching the observer: `a is known but ma seems too hard to find.

Looking at Lorentz transformations

(˜̀a, m̃a, ¯̃ma, ña) −→ SO(3, 1)+ −→ (`a,ma, m̄a, na); (8)

one gets a relation between the tetrad completely described by two real (s,Z) and
two complex (Λ, Γ ).

`a =Z
(

˜̀a + Λ ¯̃ma + Λ̄m̃a + ΛΛ̄ña
)
, (9)

ma =ZΓ
(

˜̀a + Λ ¯̃ma + Λ̄m̃a + ΛΛ̄ña
)

+ e is
(
m̃a + Λña

)
, (10)

Curvature transformation reveals that exact knowledge of Ψ0 just requires to
compute the product ZΛe is :

Ψ0 = 6
(
ZΛe is

)2
Ψ̃2. (11)
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Computation of the lens curvature scalar Ψ0 II

Conserved quantities for null geodesics in type-D spacetimes

Theorem ([Walker Penrose 1970, Chandrasekhar 1985])

If `a is an affinely parametrized null geodesic vector and ma an orthogonal vector to `a

which is parallelly propagated along it; then, in a type-D spacetime the following
quantity is conserved along the geodesic:

K = 2
[
(`a ˜̀

a)(maña)− (`am̃a)(ma ¯̃ma)
]

Ψ̃
−1/3
2 . (12)

Corolary
If a restricted Lorentz transformation link tetrad (˜̀a, m̃a, ¯̃ma, ña) with (`a,ma, m̄a, na);
the conserved quantity along null geodesics K of the theorem is

K = −2
(
ZΛe is

)
Ψ̃
−1/3
2 . (13)
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Computation of the lens curvature scalar Ψ0 III

Very simple expression for Ψ0

Ψ0 = − 3M5/3K2

2
(
r − ia cos(θ)

)5 . (14)

Remarkably simple formula along any null geodesic in Kerr spacetime; and potentially
very useful in the combined numerical integration of the geodesic and geodesic deviation

equations.
Allowing for very efficient computation!

The constant K has spin-weight 1 and it’s related to the constants of motion
(E , Lz ,K). In particular, it satisfies [Chandrasekhar 1985]

|K|2 = 2M−2/3K . (15)
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Efficient lensing for Kerr spacetime I

Previous expressions vs New expressions

Previous for < (Ψ0) Previous for = (Ψ0)

Auxiliary functions
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Efficient lensing for Kerr spacetime II

Previous expressions vs New expressions

New expression for Ψ0

Ψ0(r , θ) =
3M

(r − ia cos(θ))5

[
δz ro − i

(√
Ko + αx ro

)]2
. (16)

Shear in thin lens approximation (No need to solve geodesic)

γ1 + iγ2 = 3M
dldls
ds

[
δz ro − i

(√
Ko + αx ro

)]2 ∫ λs

0

dλ′

(r − ia cos(θ))5
. (17)
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Weak lensing of a Kerr black hole with the mass of M87 I

Ellipticity maps

Figure: Elliptical deformation.
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Weak lensing of a Kerr black hole with the mass of M87 II

Magnification

Figure: Predicted magnification.
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Summary and final comments

We showed that recurring to Kerr symmetries one obtains an exact expression for
the curvature scalar Ψ0 present in the geodesic deviation equation.

It is very simple, valid for any geodesic bundle and allow for more efficient
calculations in gravitational lensing effects; both weak and exact.

Our treatment do not recur to the notion of bending angles which is usually the
starting point in lensing works and since optical scalars are expressed in terms of
curvature they are manifestly gauge invariant.

We applied to build shear maps in the regime of weak lensing for near extreme
Kerr BH with parameters similar to those of M87.
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Thanks for your attention!
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Carter’s constant I

Theorem
A null geodesic `a, in any type-D spacetime allows the integral of motion

K0 = 2
∣∣∣Ψ̃2

∣∣∣−2/3 (`am̃a)
(
`a ¯̃ma

)
= 2

∣∣∣Ψ̃2

∣∣∣−2/3 (`a ˜̀
a

)
(`aña) . (18)

Theorem
The constant K0 is proportional to the square of the absolute modulus of the constant
K along null geodesic. The proportionality is given by

KK = |K|2 = −2 (mam̄a)K0; (19)

where we remember that ma is an orthogonal vector to null geodesic tangent vector `a,
and parallel propagated the null geodesic.
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Carter’s constant II

Relation between K and K

The relation between the constant K0 of the theorem and the Carter’s constant K
appearing in the geodesic equations is simply a rescaled by the mass of the
spacetime appearing trough Ψ̃2 , we mean

K = M2/3K0 (20)

Carter’s constant has the advantage to be independent of the mass, and
consequently it has a well behaved limit when M → 0.

Since we take ma a complex null vector which satisfies mam̄a = −1 it follows

|K|2 = 2M−2/3K . (21)
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K as a function of (αx , δz) for distant observers

The observer lies in a region far from the center −→ a
ro
≤ M

ro
� 1.

The contractions needed to compute K are:

`
a ˜̀a =

K

2Er2o
+ O

(
KM

r3o

)
, ma ñ

a =
αx − a sin(θo ) + iδz

2
√
2

(
1 + O

(M

ro

))
, (22)

`
am̃a =

−1
√
2ro

±
√√√√K −

(
Lz

sin(θo )
−
√

Ko

)2
− i

(√
Ko −

Lz

sin(θo )

)(1 + O
( a

ro

))
, (23)

ma ¯̃ma =i

(
1 + O

(M

ro

))
. (24)

and one obtains

K = −
i
√
2

M1/3

[
δz ro − i

(√
Ko + αx ro

)](
1 + O

(M

ro

))
; (25)

Ψ0(r, θ) =
3M

(r − ia cos(θ))5

[
δz ro − i

(√
Ko + αx ro

)]2 (
1 + O

(M

ro

))
. (26)
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Restricted Lorentz transformations

Decomposition of the group SO+(3, 1)

It is 6-parametric and can be expressed the product of 3 subgroups:

The ’GHP group’ parametrized by two reals (Z , s):

`a → Z`a, ma → mae is , na → Z−1na. (27)

The two dimensional (Γ ∈ C) ’null rotation’ with `a as a fixed direction:

`a → `a, ma → ma + Γ`a, na → na + Γ̄ma + Γ m̄a + Γ Γ̄ `a. (28)

The two dimensional (Γ ∈ C) ’null rotation’ with na as a fixed direction:

na → na, ma → ma + Λna, `a → `a + Λ̄ma + Λm̄a + ΛΛ̄na. (29)
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Future repeated principal null tetrad in Kerr

In terms of Boyer-Lindquist coordinates, a common choice for such a null tetrad is the
following one [Chandrasekhar 1985]:

˜̀a =
r2 + a2

∆
∂a
t + ∂a

r +
a

∆
∂a
φ, (30)

ña =
r2 + a2

2Σ
∂a
t −

∆

2Σ
∂a
r +

a

2Σ
∂a
φ, (31)

m̃a =
ia sin(θ)√

2r
∂a
t +

1√
2r

(
∂a
θ +

i

sin(θ)
∂a
φ

)
; (32)

where the complex function r is defined as:

r = r + ia cos(θ), (33)
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Boyer-Lindquist frame and the Observer frame I

Null geodesic vector `a and parallel transport vetor ma can be written in the
tangent space of the observer as:

`a =Ta− sin
(π
2
− δz

)
cos
(π
2
− αx

)
Xa

− sin
(π
2
− δz

)
sin
(π
2
− αx

)
Ya− cos

(π
2
− δz

)
Za.

(34)

and

ma =
1√
2

[
−i cos

(π
2
− δz

)
cos
(π
2
− αx

)
+ sin

(π
2
− αx

)]
Xa

+
1√
2

[
−i cos

(π
2
− δz

)
sin
(π
2
− αx

)
− cos

(π
2
− αx

)]
Ya +

i√
2

sin
(π
2
− δz

)
Za, [X]

(35)
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Boyer-Lindquist frame and the Observer frame II

The frame of the observer (Ta,Xa,Ya,Za) is chosen as follows:

Ta =
√
1− Φodta +

Φoa sin(θo)2√
1− Φo

dφa, (36)

Xa =

√
∆o

Ny

[
Φoa sin(θo)√
∆o

√
1− Φo

√
Σo

∆o
dra −

√
Rcm

Σo

sin(θo)√
1− Φo

dφa

]
, (37)

Ya =

√
∆o

Ny

[√
Rcm

∆o
dra +

Φoa sin(θo)2

1− Φo
dφa

]
, (38)

Za =
√

Σodθa. (39)
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