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Introduction and motivations I

We are interested in a treatment of weak lenses which allow us to consider the
whole curvature of the lens and therefore its whole energy-momentum; as an
improvement to the standard formalism of weak lenses
[Seitz et al. 1994, Schneider et al. 1992] in which just Newtonian matter
distributions are considered.

Several works in the literature have suggested that a broader approach in the mass
content may be useful in the astrophysical description of DM [Gallo Moreschi 2012,
Nucamendi et al. 2001, Arbey et al. 2003, Matos et al. 2000].

In particular, it is desirable to have at hand expressions in terms of the whole
curvature of the lens; and so available for any field equations besides Einstein’s
equations.

We present a generalization of a previous work [Gallo Moreschi 2011] about general
expressions for the optical scalars over a flat background to the cosmological
context from first principles, this is recurring to the geodesic deviation equation.

The expressions present two important features: they show the presence of new
terms that are usually neglected and at the same time contains in a natural way
the possibility of moving lenses.
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Weak gravitational lensing I

The geodesic deviation equation
With respect to a null tetrad adapted to the path of the photons (`a,ma, m̄a, na)
the deviation geodesic vector is:

ςa = ςm̄a + ς̄ma.

The geodesic deviation equation:

` (` (X )) = −QX ,

X =

(
ς

ς̄

)
and Q =

(
Φ00 Ψ0

Ψ̄0 Φ00

)
.

For computing the optical scalars we choose to make the comparison with respect to the
flat spacetime.

It is crucial to establish the distance to the source: the unique well defined geometrical
distance is the affine distance, namely λ.
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Weak lensing cosmology I
In a Robertson-Walker cosmology

The lens is actually the whole spacetime; i.e. it is not placed at any particular
distance. Due to the symmetry there is no notion of deflection angle.

However, there exist a notion for the optical scalars: δβ = (1− κc)δθ

κc (λ) =
4πG%cr

3!c2

(
Ωm +

4
3

Ωr

)
λ2 +

8πG%cr

4!c3 H0

(
5Ωm + 8Ωr

)
λr + O

(
λ4) .

An additional lens over the cosmology

An alteration of the complete homogeneity and isotropy in scales much smaller
than the cosmological ones.
The optical scalars are computed without recurring to the deflection angle

` (` (X )) = − (QB + QL)X ,

where

QB =

(
ΦB

00 0
0 ΦB

00

)
, QL =

(
ΦL

00 ΨL
0

Ψ̄L
0 ΦL

00

)
.
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Weak lensing cosmology II
New expressions for the optical scalars in the cosmological context

The optical matrix A has the following structure

A = (1− κc )

(
1− κL − γL1 −γL2
−γL2 1− κL + γL1

)
;

κL =

∫ λs

0

(
1
D2

A

∫ λ′

0
ΦL

00 D
2
A dλ′′

)
dλ′,

γL1 + iγL2 =

∫ λs

0

(
1
D2

A

∫ λ′

0
ΨL

0 D
2
A dλ′′

)
dλ′.

These equations are more general than the standard ones; they contain the whole
curvature and therefore the complete energy-momentum tensor of the lens.

In the general case one has to notice that κL and γL are independent; something
that standard mass reconstructions techniques do not take it into account.
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Weak lensing cosmology III

The thin lens approximation
The optical scalars simplify to

κL = Dls

∫ λs

0
ΦL

00 dλ
′, γL

1 + iγL
2 = Dls

∫ λs

0
ΨL

0 dλ
′,

The distance factor Dls only contains information about the cosmology:

Dls =
1

1 + zl

DAlsDAl

DAs

;

where zl is the cosmological redshift at the position of the lens.

It is important to remark that in the standard literature,
the first factor on the right hand side is missing.

Geometric model for the lens can be considered; for example spherically
[Gallo Moreschi 2011, Gallo Moreschi 2012] and spheroidally symmetric lenses
[Boero Moreschi 2016].
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Geometric models I

Geometric models for the lens
When the lens is modeled as static and spherically symmetric one obtains some useful
expressions in terms of the energy-momentum components:

ΦL
00 (J) =

4πG
c2

[
%(r) +

Pr (r)
c2 +

J2

c2r2

(
Pt(r)− Pr (r)

)]
,

ΨL
0 (J) =

G

c2
J2

r2

[
3M(r)

r3
−
(
%(r) +

Pt(r)
c2 − Pr (r)

c2

)]
;

where the impact parameter J and λ satisfy:

r2 = J2 + λ2.

Even Kerr lenses can be considered in a simple way along this line (Wednesday):

ΨL
0(X ,Z) =

3M
(r − ia cos(θ))5

[
Z − i

(√
Ko + X

)]2
.

If one is interested in a moving lens then ...
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Moving lenses I

For a moving lens one might to refer the expression of the optical scalars to the
intrinsic rest frame of the lens.
Instead of calculate the curvature of moving sources one can think in leaving the
geometry unaffected and only change the frame of observation by an appropriate
boost.

Both, ΦL
00 and ΨL

0 behave in the same way under boost.
Intrinsic optical scalars, oL =

{
κL, γL

}
transform in the following way:

oLv = (1 + zv )oLr ,

Comparing with the usual expressions one has

oLv =
1 + zv
1 + zl

DAlsDAl

DAs

∫ λs

0
C L
r dλ′

r

where the part in blue takes into account the motion of the lens and the rest of
the expression would corresponds to the usual quotient Σ

Σcr
.

The derivations of the motion of the lens is straightforward in this approach. (Let
see for example [Kopeikin Schaefer 1999, Frittelli 2003, Wucknitz Sperhake 2004])
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Magnifications I
Magnifications and magnitudes

We define the physical magnification, in terms of the λ; instead of the usual
astrophysical magnification defined in terms of z , which requires a cosmological model.

Angular magnification µ and intensity magnification µ̃:

µ(λ) =
1

(1− κ)2 − (γ2
1 + γ2

2)
, µ̃(λ) =

F (λ, z)

FMink(λ, z)
;

General definition even for a Robertson-Walker lens. Let us note that µ ≥ 1.

As a consequence of pure geometric arguments; the Etherington’s theorem one has

µ = µ̃

Cosmological intensity magnification µ′
c (one adopts a cosmological model):

µ′
c(z) =

F (z)

FMilne(z)
;

is only function of redshift as usually employed in practical applications.
It recurs to the flat Milne Universe where one has a relation λ(z).
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Magnifications II

Two different notion of magnitudes
The above magnifications can be related to the astronomical magnitudes.
One can consider two different meanings for the magnitudes:

m −M = −5
2

logµ(λ) + 5 log

(
λ(1 + z)2

λ10Pc

)
it is valid in any spacetime and only contains information of the optical scalars and
kinematic variables.
When the redshift is employed as indicator of distances one has:

m −M = −5
2

logµ′
c(z) + 5 log

(
λMilne(z)(1 + z)2

λ10Pc

)
it only can be used when one has additional structure on the spacetime such as in
cosmology where a family of preferred observed is present.

Let us note that µ′
c(z) is the quantity intervening in the usual supernovae analysis

where a cosmological constant Λ is argued.
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Magnifications III

Planck H0=67.4

Baryonic H0=72.0

k=-1, Wm =0.314 , H0=72.0

Milne
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The notion of ‘brighter’ and/or ‘fainter’ depends on the way the observational data
are studied.

Let us note that for the ΛCDM concordance model µ′
c ≤ 1.

However, if one utilizes the notion µ̃ = µ one always would obtain µ ≥ 1.

At the same time, the fluxes do not contain information about a cosmological
constant Λ because µ contains the traceless part of the Ricci and Weyl tensors.
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Summary and final comments

We have been presented a general formalism for weak lensing immersed in a
standard cosmological context where the notion of deflection angle can be avoided
and the motion of the lens is contained in a very straightforward way.

The new equations derived here for the optical scalars allow to deal with more
general matter content including sources with non-Newtonian components of the
energy–momentum tensor and arbitrary motion.

The formalism is well suitable for dealing with geometrical models, rather than by
just its energy density distributions.

The use of affine parameter suggest to use a slightly different notion of
magnification, namely µ̃(λ) which do not depend on the choice of a given
cosmological model.

With this notion of mangnification the celebrated supernova luminosity
observation, appears as an increase in the luminosity as a function of the affine
distance.
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Thanks for your attention!
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