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Lecture 21 and 22: The Prime Number Theorem 

(New lecture, not in Text) 

The location of prime numbers is a central question in number theory. Around 
1808, Legendre offered experimental evidence that the number π(x) of primes < x 
behaves like x/ log x for large x. Tchebychev proved (1848) the partial result that 
the ratio of π(x) to x/ log x for large x lies between 7/8 and 9/8. In 1896 Hadamard 
and de la Valle Poussin independently proved the Prime Number Theorem that the 
limit of this ratio is exactly 1. Many distinguished mathematicians (particularly 
Norbert Wiener) have contributed to a simplification of the proof and now (by an 
important device by D.J. Newman and an exposition by D. Zagier) a very short and 
easy proof is available. 

These lectures follows Zagier’s account of Newman’s short proof on the prime 
number theorem. cf: 

(1) D.J.Newman, Simple Analytic Proof of the Prime Number Theorem, Amer. 
Math. Monthly 87 (1980), 693-697. 

(2) D.Zagier, Newman’s short proof of the Prime Number Theorem. Amer. 
Math. Monthly 104 (1997), 705-708. 

The prime number theorem states that the number π(x) of primes which are 
x 

less than x is asymptotically like : 
log x 

π(x) 
−→ 1 as x → ∞. 

x/ log x 

Through Euler’s product formula (I) below (text p.213) and especially through 
Riemann’s work, π(x) is intimately connected to the Riemann zeta function 

∞0 1 
ζ(s) = , 

ns 
n=1 

which by the convergence of the series in Res > 1 is holomorphic there.
 

1
 



I 

The prime number theorem is approached by use of the functions
 

log p
0
 0
 

Φ(s)
 =
 V(x) = log p.
 ,
 
ps 

p≤x prime p prime 

1 
Simple properties of Φ will be used to show ζ(s)  0 and Φ(s)−= holomorphic 

s − 1 
for Res ≥ 1. Deeper properties result from writing Φ(s) as an integral on which 
Cauchy’s theorem for contour integration can be used. This will result in the relation 
V(x) ∼ x from which the prime number theorem follows easily. 

1
 I


(1 − p
 −s) for Res > 1.
=
ζ(s) 

p 

Proof: see text p.213. 

1 
II ζ(s) − extends to a holomorphic function in Res > 0. 

s − 1 

Proof: In fact for Res > 1, 

∞ J ∞ 

1 

1
 1
 dx
 0
 

ζ(s) − = −
nss − 1 xs 

n=1 
∞ 0


J n+1  1 1
 


= − dx 
ns xs

n=1 n

But
  
 
 
 


1 1
 
−
 

ns xs

 
 
 
 

=


 
 
 
 


s
 
dy 

ys+1

 
 
 
 

≤ max
 

n≤y≤x

 
 
 
 


s
 

ys+1

 
 
 
 

≤
 

n


J x s
 
,


Res+1 
n 

so the sum above converges uniformly in each half-plane Res ≥ δ (δ > 0).
 

III V(x) = O(x) (Sharper form proved later).
 

Proof: Since the p in the interval n < p ≤ 2n divides (2n)! but not n! we have
 

2n  
2n
 

 
  
2n
 

 

I
0
 

22n = (1 + 1)2n =
 V(2n)−V(n)≥ ≥
 
k n

k=0 n<p≤2n 

p = e
 ,
 

Thus 
V(2n) − V(n) ≤ 2n log 2. (1) 
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x 
If x is arbitrary, select n with n < ≤ n + 1, then 

2 

V(x) ≤ V(2n + 2) ≤ V(n + 1) + (2n + 2) log 2 (by (1)) 
(x )

= V + 1 + (x + 2) log 2 
2 

(x) (x ) 

= V + log + 1 + (x + 2) log 2. 
2 2 

Thus if C > log 2, 

(x)

V(x) − V ≤ Cx for x ≥ x0 = x0(C). (2) 
2

Consider the points 

x x 
0 

x 

2
r+1 

x 

2
r-1 

x 

2
r 

x 

2 

Use (2) for the points right of x0, 

(x) ( x ) x 
V − V ≤ C ,

2 22 2
. . . 

( x ) ( x ) x 
V − V ≤ C . 

2r 2r+1 2r 

Summing, we get 

( x )

V(x) − V(x0) ≤ V(x) − V
2r+1 

x 
≤ Cx + · · · + C ,

2r 

so 
V(x) ≤ 2C(x) + O(1). 

1 
IV ζ(s) = 0 and Φ(s) − is holomorphic for Res ≥ 1. 

s − 1 
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 Proof: If Res > 1, part I shows that ζ(s) = 0 and
 

ζ ′ (s) 0 log p 0 log p
− = = Φ(s) + . (3) 

ζ(s) ps − 1 ps(ps − 1) 
p p 

The last sum converges for Res > , so by II, Φ(s) extends meromorphically to 

1 
Res > with poles only at s = 1 and at the zeros of ζ(s). Note that 

ζ(s) = 0 =⇒ ζ(s̄) = 0. 

Let α ∈ R. If s0 = 1 + iα is a zero of ζ(s) of order µ ≥ 0, then 

ζ ′ (s) µ
− = − + function holomorphic near s0. 

ζ(s) s − s0 

So 
lim ǫΦ(1 + ǫ + iα) = −µ. 
ǫ→0 

We exploit the positivity of each term in 

0 log p
Φ(1 + ǫ) = 

p1+ǫ 
p 

for ǫ > 0. It implies 
( )20 log p iα − iα 

2 2p + + p ≥ 0, 
p1+ǫ 

p 

so 
Φ(1 + ǫ + iα) + Φ(1 + ǫ − iα) + 2Φ(1 + ǫ) ≥ 0. (4) 

By II, s = 1 is a simple pole of ζ(s) with residue +1, so 

lim ǫΦ(1 + ǫ) = 1. 
ǫց0 

Thus (4) implies 
−2µ + 2 ≥ 0, 

so 
µ ≤ 1.
 

This is not good enough, so we try
 

0 log p iα − iα
 
( )4 

2 2p + + p ≥ 0. 
p1+ǫ 

p 

1 

2

2 
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V 

Putting
 
lim ǫΦ(1 + ǫ ± 2iα) = −ν, 
ǫց0 

where ν ≥ 0 is the order of 1 ± 2iα as a zero of ζ(s), the same computation gives 

6 − 8µ − 2ν ≥ 0, 

1 
which implies µ = 0 since µ, ν ≥ 0. Now II and (3) imply Φ(s)− holomorphic 

s − 1 
for Res ≥ 1. 

J ∞ V(x) − x 
dx is convergent. 

x2 
1 

Proof: The function V(x) is increasing with jumps log p at the points x = p. Thus 

0 log p
Φ(s) = 

ps 
p 
J ∞ V(x) 

= s dx 
xs+1 

1 

1 

+1 

(
 )

= 

f∞ L f pi+1 as this integral becomes 
L∞ 

1 i pi i=1 
1 −1In fact, writing
 V(pi) −
 s
s

i 

s

i
pp

twhich by V(pi+1) − V(pi) = log pi+1 reduces to Φ(s). Using the substitution x 
we obtain J ∞ 

−stV(e t)Φ(s) = s e dt Res > 1. 
0 

Consider now the functions 

f(t) = V(e t)e −t − 1, 

Φ(z + 1) 1 
g(z) = − . 

z + 1 z 

f(t) is bounded by III and we have 

e


TJ e V(x) − x 
J T 

dt = f(t) dt . (5) 
2x1 0 

Also, by IV, 

Φ(z + 1) = + h(z), 
z 

where h is holomorphic in Rez ≥ 0, so 

Φ(z + 1) 1 h(z) − 1 
g(z) = − = 

z + 1 z z + 1 

5 
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is holomorphic in Rez ≥ 0. 

For Rez > 0 we have 
J ∞ J ∞ 

g(z) = e −zt(f(t) + 1) − e −zt dt 
0 0 

J ∞ 
−ztf(t)= e dt. 

0 

Now we need the following theorem: 

Theorem 1 (Analytic Theorem) Let f(t) (t ≥ 0) be bounded and locally inte

grable and assume the function 
J ∞ 

−ztf(t)g(z) = e dt Re(z) > 0 
0 

extends to a holomorphic function on Re(z) ≥ 0, then 
J T 

lim f(t) dt 
T→∞ 0 

exists and equals g(0). 

This will imply Part V by (5). Proof of Analytic Theorem will be given later. 

VI V(x) ∼ x. 

Proof: Assume that for some λ > 1 we have V(x) ≥ λx for arbitrary large x. Since 
V(x) is increasing we have for such x 

J λx J λx J λV(t) − t λx − t λ − s 
dt ≥ dt = 

2 
ds = δ(λ) > 0. 

t2 t2 sx x 1 

On the other hand, V implies that to each ǫ > 0, ∃K such that 

J K2 V(x) − x 
dx < ǫ for K1, K2 > K. 

2xK1 

Thus the λ cannot exist. 

Similarly if for some λ < 1, V(x) ≤ λx for arbitrary large x, then for t ≤ x, 

V(t) ≤ V(x) ≤ λx, 

so J x J x J 1V(t) − t λx − t λ − s 
≤ = ds = δ(λ) < 0. 

t2 t2 s2 
λx λx λ 
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Again this is impossible for the same reason. Thus both 

V(x)
β = lim sup > 1 

xx→∞ 

and 
V(x)

α = lim inf < 1 
x→∞ x 

are impossible. Thus they must agree, i.e. V(x) ∼ x. 

Proof of Prime Number Theorem: 

We have 0 0 

V(x) = log p ≤ log x = π(x) log x, 
p≤x p≤x 

so 
π(x) log x V(x)

lim inf ≥ lim inf = 1. 
x→∞ x x→∞ x 

Secondly if 0 < ǫ < 1, 
0 

V(x) ≥ log p 
x1−ǫ≤p≤x 

0 

≥ (1 − ǫ) log x 
x1−ǫ≤p≤x 

�
1−ǫ)

� 
= (1 − ǫ) log x π(x) + O(x 

thus 
π(x) log x 1 V(x)

lim sup ≤ lim sup 
x→∞ x 1 − ǫ x→∞ x 

for each ǫ. Thus 
π(x) log x 

lim = 1. 
x→∞ x 

Q.E.D. 

Proof of Analytic Theorem: (Newman). 

Put J T 

gT (z) = e −ztf(t) dt, 
0 

which is holomorphic in C. We only need to show 

lim gT (0) = g(0). 
T→∞
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|z| = R 

δ 0 

C 

Fix R and then take δ > 0 small enough so that 
g(z) is holomorphic on C and its interior. 

By Cauchy’s formula 

g(0) − gT (0) = 
J 21 zT z dz 

(g(z) − gT (z)) e 1 + . (6) 
2πi C R2 z 

On semicircle
 
C+ : C ∩ (Rez > 0)
 

2B 
integrand is bounded by , where 

R2 

B = sup |f(t)|. 
t≥0 

In fact for Rez > 0, 

J ∞ 
−zt dt |g(z) − gT (z)| = f(t)e 

T 
J ∞ 

≤ B |e −zt| dt 
T 

Be−RezT 

= 
Rez 

and 
2z 1 2RezzT RezT Reiθ).e 1 + = e · (z = 

R2 R2z 

B 
So the contribution to the integral (6) over C+ is bounded by , namely 

R

Be−RezT 2Rez 1 BRezT · e · · πR = . 
R2Rez 2π R 

Next consider the integral over 

8
 

( )

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

( )



0
.

 
 
 
 

 
 
 
 

 
 
 
 

   
 
 
 

C_ =
 0 
. 

Look at g(z) and gT (z) separately. For gT (z) which is entire, this contour can be 
replaced by 


 

B 
Again the integral is bounded by 

R 
because 

J T 
−ztdt |gT (z)| = f(t)e 

0 
J T 

−zt|≤ B |e dt 
0 

J T 
−zt|≤ B |e dt 

−∞ 

Be−RezT 

= 
|Rez| 

and 
2z 1 

1 + 
R2 z 

on C ′ has the same estimate as before. 
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C'_ =
0
.

aborah
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There remains 
J 

zT z2 1 
e g(z) 1 + dz. 

R2 zC 
" � . 

indep. of T 

On the contour, |ezT | ≤ 1 and 

lim |e zT | → 0 for Rez < 0. 

C_ = 
δ 

T→∞

By dominated convergence, the integral → 0 as T → +∞, δ is fixed. It follows 
that 

2B 
lim sup |g(0) − gT (0)| ≤ . 

T→∞ R 

Since R is arbitrary, this proves the theorem. 

Q.E.D. 

Remarks: Riemann proved an explicit formula relating the zeros ρ of ζ(s) in 0 < 
Res < 1 to the prime numbers. The improved version by von Mangoldt reads 

0 

V(x) = log p 
p≤x 

ρ −2n0 x 0 x
= x − + − log 2π. 

ρ 2n 
{ρ} n≥1 

1 
He conjectured that Reρ = for all ρ. This is the famous Riemann Hypothesis. 

2 
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