Mecánica Cuántica II

Guía 5 - Noviembre de 2010

Problema 1: Considere dos partículas idénticas en el estado $\psi(\xi_1, \xi_2)$ donde ξ_j denota todas las variables asociadas con cada una de las dos partículas. Verifique que la densidad de partículas $\rho(\xi)$ ($\rho(\xi)$ $d\xi$ es el número de partículas en el elemento infinitesimal $d\xi$ centrado en ξ) es

$$\rho(\xi) = 2 \int d\eta \, |\psi(\xi, \eta)|^2$$

tanto en el caso de bosones como fermiones. Si ahora

$$\psi(\xi_1, \xi_2) = C \left[\psi_1(\xi_1) \psi_2(\xi_2) \pm \psi_1(\xi_2) \psi_2(\xi_1) \right]$$

donde ψ_1 y ψ_2 son estados normalizados de una sola partícula, C es la constante de normalización apropiada y el signo tiene en cuenta si las partículas son bosones o fermiones, verifique que entonces

$$\rho(\xi) = 2|C|^2 \left[|\psi_1(\xi)|^2 + |\psi_2(\xi)|^2 \pm 2 \operatorname{Re} \psi_1^*(\xi)\psi_2(\xi) \cdot \int d\eta \, \psi_1(\eta)\psi_2^*(\eta) \right]$$

El último término tiene en cuenta los llamados efectos de solapamiento o intercambio. Estudie en qué casos este término será despreciable, y qué relación hay entonces con el hecho de que las partículas sean indistinguibles.

Problema 2: La función gran partición para partículas indistinguibles.

Se tienen N partículas idénticas no interactuantes bajo la acción de un potencial armónico unidimensional de frecuencia ω . En la representación número de ocupación el Hamiltoniano toma la forma $H = \sum_i \epsilon_i \hat{n}_i$, donde $\epsilon_i = (i+1/2)\hbar\omega$; \hat{n}_i es el operador número de partículas con energía ϵ_i y el operador número total de partículas es $\hat{N} = \sum_i \hat{n}_i$. Un autoestado del sistema se representa por el vector $|n_0, n_1, \cdots, n_k, \cdots\rangle$ y su correspondiente energía es $E_{n_0, n_1, \cdots, n_k, \cdots} = \sum_i n_i \epsilon_i$.

En mecánica estadística se definió la función gran partición como

$$\Xi = Tr\left(\exp\left[-\beta\left(H - \mu\hat{N}\right)\right]\right)$$

donde la traza se toma sobre estados en el espacio de Fock correspondiente.

Cálcule E considerando las partículas como

- a) Bosones de espín cero.
- b) Fermiones de espín 1/2.

Problema 3: En un sistema de partículas indistinguibles se ha definido el operador unitario P_{α} asociado con una dada permutación α de manera que

$$P_{n_1,\ldots,n_N} |\alpha_1,\ldots,\alpha_N\rangle = |n_1:\alpha_1,\ldots,n_N:\alpha_N\rangle$$
.

a) Verifique que

$$S = \frac{1}{N!} \sum_{\alpha} P_{\alpha} , \quad A = \frac{1}{N!} \sum_{\alpha} sgn(\alpha) P_{\alpha} ,$$

donde $sgn(\alpha)$ es la paridad de la permutación α , son los correspondientes operadores de simetrización y antisimetrización.

b) Pruebe que S y A son proyectores, de modo que se cumple

$$S^2 = S = S^{\dagger}$$
, $A^2 = A = A^{\dagger}$ y $SA = AS = 0$.

c) Verifique que

$$SP_{\alpha} = P_{\alpha}S = S$$
 y $AP_{\alpha} = P_{\alpha}A = sgn(\alpha)A$

para cualquier permutación P_{α} .

Problema 4: Si el espacio de estados \mathcal{H} de una partícula, es de dimensión D (finita), entonces la dimensión del espacio $\mathcal{H}^{(N)} = \mathcal{H} \otimes \mathcal{H} \dots \otimes \mathcal{H}$ tendrá dimensión D^N . Muestre que la dimensión de los subespacios $\mathcal{H}_S^{(N)}$ totalmente simétrico y $\mathcal{H}_A^{(N)}$ totalmente antisimétrico son

$$dim\left(\mathcal{H}_{S}^{(N)}\right) = \begin{pmatrix} D+N-1\\ N \end{pmatrix} \; ; \; dim\left(\mathcal{H}_{A}^{(N)}\right) = \left\{ \begin{array}{ll} 0 & D < N\\ \binom{D}{N} & D \geq N \end{array} \right. \tag{1}$$

Muestre que
$$dim\left(\mathcal{H}_{S}^{(N)}\right) + dim\left(\mathcal{H}_{A}^{(N)}\right) < dim\left(\mathcal{H}^{(N)}\right) = D^{N}$$
 si $N \geq 3$.

Problema 5: Suponga que el Hamiltoniano H_0 de una partícula sólo actúa sobre variables orbitales y suponga además que H_0 posee sólo tres niveles no degenerados de energías 0, $\hbar\omega_0$ y $2\hbar\omega_0$ con autoestados ψ_0 , ψ_1 y ψ_3 respectivamente. Considere ahora un sistema de tres de tales partículas no interactuantes, es decir descripto por el hamiltoniano

$$H = H_0(1) + H_0(2) + H_0(3).$$

Calcule los niveles de energía, sus degeneraciones y sus correspondientes autofunciones para el caso de

- a) Partículas distinguibles.
- b) Electrones.
- c) Bosones de espín 0.

Problema 6: Es posible estudiar la energía fundamental de un átomo con carga nuclear Ze_o y dos electrones mediante el método variacional. La función de prueba más simple es

$$\Psi_{\zeta}(\vec{r}_1, \vec{r}_2) = \frac{\zeta^3}{\pi a^3} e^{-\zeta(r_1 + r_2)/a} , \quad a = \frac{\hbar^2}{\mu e_o^2}$$

tomando ζ como parámetro de ajuste. Teniendo en cuenta que Ψ_{ζ} es el producto de estados fundamentales para un electrón (de masa μ) en el campo coulombiano generado por una carga ζe_o , se interpreta a ζ como carga efectiva en el átomo.

- a) Verifique que Ψ_{ζ} está adecuadamente normalizada.
- b) Encuentre el valor de expectación para la energía del átomo en el el estado Ψ_{ζ} , y verifique que la mejor cota para la energía fundamental se obtiene cuando $\zeta=Z-5/16$. Compare esta cota a la energía fundamental con el valor obtenido mediante otros métodos.

Problema 7: Verifique la normalización de la expresión

$$\Psi_{JM}^{(2)} = \frac{1}{\sqrt{2}} \sum_{m_1, m_2} a_{jm_2\alpha}^{\dagger} a_{jm_1\alpha}^{\dagger} \langle jjm_1 m_2 | jjJM \rangle \Psi^{(0)}$$

Problema 8: Construya explícitamente, en término de los estados de la forma $a^{\dagger}_{jm_2\alpha}a^{\dagger}_{jm_1\alpha}\Psi^{(0)}$ los autoestados del momento angular total para dos neutrones en configuraciones $(p_{1/2})^2$ y $(p_{3/2})^2$. ¿Cómo serían los autoestados del momento angular total si las partículas fueran un protón y un neutrón pero con los mismos números cuánticos del caso neutrón-neutrón?

Problema 9: Muestre que si dos partículas idénticas con los mismos números cuánticos α y con momento angular j se acoplan con momento angular total cero, el par resultante es, con notación simplificada obvia,

$$\Psi_{00}^{(2)} = \frac{1}{\sqrt{2(2j+1)}} \sum_{m=-j}^{j} (-1)^m a_m^{\dagger} a_{-m}^{\dagger} \Psi^{(0)}$$