Trabajos de investigación (publicaciones internacionales con referato)

  1. C. N. Kozameh, E. T. Newman, O. E. Ortiz, Maxwell fields on asymptotically simple space-times, Phys. Rev. D, 42(2), 503-510 (1990).
    (DOI:http://dx.doi.org/10.1103/PhysRevD.42.503)
  2. G. B. Nagy, O. E. Ortiz, O. A. Reula, The behaviour of hyperbolic heat equations's solutions near their parabolic limits, J. Math. Phys., 35(8), 4334-4356 (1994).
    (DOI:http://dx.doi.org/10.1063/1.530856)
  3. H.-O. Kreiss, G. B. Nagy, O. E. Ortiz, O. A. Reula, Global existence and exponential decay for hyperbolic dissipative relativistic fluid theories, J. Math. Phys., 38(10), 5272-5279 (1997).
  4. G. B. Nagy, O. E. Ortiz, O. A. Reula, Exponential decay rates in quasi-linear hyperbolic heat conduction, J. Non-Equilib. Thermod., 22(3), 248-259 (1997).
    (DOI:10.1515/jnet.1997.22.3.248)
  5. H.-O. Kreiss, O. E. Ortiz, O. A. Reula, A simple proof of global existence for a restricted class of relativistic dissipative fluids. Invited plenary sesion, Gravitation and Cosmology, Proceedings of the Asia Pacific Conference, Seoul, Korea, 1-6 Febraury 1996. Edited by Y.M. Cho, C.H. Lee and S.-W. Kim, World Scientific Publishing (1998).
  6. H.-O. Kreiss, O. E. Ortiz, O. A. Reula, Stability of quasi-linear hyperbolic dissipative systems, J. Diff. Eqns., 142, 78-96 (1998).
    (DOI:10.1006/jdeq.1997.3341)
  7. O. E. Ortiz, Stability of non-conservative hyperbolic systems and relativistic dissipative fluids, J. Math. Phys., 42(3), 1426-1442 (2001).
    (DOI:http://dx.doi.org/10.1063/1.1336513)
  8. H.-O. Kreiss, O. E. Ortiz, Some mathematical and numerical questions connected with first and second order time dependent systems of partial differential equations, in J. Frauendiener and H. Friedrich (eds) The conformal structure of spacetimes: Geometry, Analysis, Numerics. Lecture Notes in Physics 604, Springer Verlag, Heidelberg, 2002.
    (Citado 29 veces: http://www.slac.stanford.edu/spires/)
  9. G. B. Nagy, O. E. Ortiz, O. A. Reula, Strongly hyperbolic second order Einstein's evolution equations, Phys. Rev. D 70, 044012 (2004).
    (arXiv:gr-qc/0402123v2)
    (DOI:10.1103/PhysRevD.70.044012)
    (Citado 76 veces: http://www.slac.stanford.edu/spires/).
  10. S. Dain, O. E. Ortiz, Numerical evidences for the angular momentum-mass inequality for multiple axially symmetric black holes, Phys. Rev. D 80 024045 (2009).
    (arXiv:0905.0708v1 [gr-qc])
    (DOI:10.1103/PhysRevD.80.024045).
  11. S. Dain, O. E. Ortiz, Well-posedness, linear perturbations and mass conservation for axisymmetric Einstein equation, Phys. Rev. D. 81 044040 (2010).
    (arXiv:0912.2426v1 [gr-qc])
    (DOI: 10.1103/PhysRevD.81.044040)
  12. H. O. Kreiss, O. E. Ortiz, N. A. Petersson, Initial-Boundary value problems for second order systems of partial differential equations, ESAIM: Mathematical Modelling and Numerical Analysis, 46, 3, 559-593 (2012).
    (arXiv:1012.1065v1)
    (DOI:10.1051/m2an/2011060)
  13. J. P. Giovacchini, O. E. Ortiz, Flow force and torque on submerged bodies in lattice-Boltzmann via momentum exchange, Phys. Rev. E, 92, 063302 (2015).
    (arXiv:1407.4524v2 [physics.flu-dyn])
    (DOI:10.1103/PhysRevE.92.063302)
  14. P. Anglada, S. Dain, O. E. Ortiz, Inequality between size and charge in spherical symmetry, Phys. Rev. D 93 044055 (2016).
    (arXiv:1511.04489v1 [gr-qc])
    (DOI:10.1103/PhysRevD.93.044055)
  15. P. Anglada, M. E. Gabach-Clement, O. E. Ortiz, Size, angular momentum and mass for objects, Class. and Quantum Grav. 34 125011, (2017).
    arXiv:1612.08658 [gr-qc]
    (DOI:10.1088/1361-6382/aa6f3f)
Omar E. Ortiz 2017-11-10