Métodos Numéricos (2011)

Guía de problemas Nº 4

Problema 1: Demostrar que si f es un polinomio de grado menor o igual que n entonces el polinomio de grado menor o igual que n que interpola a f en $x_0, x_1, ..., x_n$ es f.

Problema 2: Considere los siguientes conjuntos de datos

- a) Calcular el polinomio interpolante p(x) de grado menor o igual que 3, en la forma de Lagrange.
- b) Construir las tablas de diferencias divididas y construir los polinomios interpolantes.
- c) Agregar a las tablas el punto x = 4, y = 1 y actualizar las tablas de diferencias divididas para recalcular los polinomios interpolantes.

Problema 3: Un Spline lineal puede pensarse como una sucesión de polinomios interpolantes de grado 1, entre nodo y nodo, "empalmados" en forma contínua. Suponga que se particiona el intervalo [1,2] en n subintervalos iguales de longitud h=1/n, y que se fabrica el spline lineal usando como nodos a los extremos de los sub-intervalos así generados. ¿Cuál es el mínimo valor de n que garantiza que la spline lineal aproxima a la función interpolada, \sqrt{x} , con siete decimales correctos?

Problema 4: Sea $f:[0,5] \to \mathbb{R}$, y $f(x) + 2^x$. Sea P_n un poinomio de grado n que interpola a f en n+1 puntos distintos cualesquiera de dicho intervalo. Demostrar que para todo $x \in [0,5]$,

$$|P_n(x) - f(x)| \le \frac{32 \times 5^{n+1}}{(n+1)}.$$

Problema 5: Mostrar que la spline lineal S(x) que interpola en los nodos x_0, \ldots, x_n es la función que minimiza

$$\int_{x_0}^{x_n} \left(g'(x) \right)^2 dx \tag{1}$$

entre todas las funciones g tales que $g(x_i) = f_i$, $i = 0, 1, \dots n$ y tal que la integral (1) es acotada.

Problema 6: Calcular una aproximación de f(2,5) interpolando los datos usando una spline cúbica natural que interpola los valores $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, $f_1 = 0$, $f_2 = 3$, $f_3 = 4$, $f_4 = 4$.

Problema 7:

a) Determinar valores de $\alpha,\,\beta,\,\mathbf{y}$ γ para que S sea una función spline cúbica, siendo

$$S(x) = \begin{cases} \alpha x^3 + \gamma x, & 0 \le x \le 1, \\ -\alpha x^3 + \beta x^2 - 5\alpha x + 1, & 1 \le x \le 2. \end{cases}$$

- b) con los valores de α , β , γ del ítem anterior, decidir si S interpola a la función $f(x) = 2^x + 0.5x^2 0.5x 1.0$, $0 \le x \le 2$, respecto de la partición $\{0, 1, 2\}$.
- c) Graficar simultáneamente f y S en el intervalo [0,2].