Métodos Numéricos (2012)

Guía de problemas Nº 3

Problema 1: Si se usa el método de bisección para hallar la menor raíz positiva de la ecuación $2x = \tan(x)$. ¿Cuántos pasos son necesarios para garantizar que el error es menor a 10^{-3} ?

Problema 2: Dado a > 0, para calcular \sqrt{a} consideramos $f(x) = x^2 - a = 0$.

- a) Muestre que el método de Newton genera la siguiente iteración: $x_{n+1} = (x_n + a/x_n)/2$.
- b) Probar que para cualquier x_0 , $0 < x_0 < \infty$, las aproximaciones generadas por el método de Newton satisfacen $x_n \geq \sqrt{a}$.
- c) Probar que la sucesión es no-creciente $(x_n \ge x_{n+1} \text{ para todo } n)$.
- d) Finalmente concluir que la sucesión generada por el algoritmo converge a \sqrt{a} .

Problema 3: Diseñe una iteración para calcular $\sqrt[3]{R}$, donde R>0. Realice un análisis del gráfico de la función f(x) para determinar cuáles son los puntos iniciales para los cuales la iteración converge.

Problema 4: Encuentre una aproximación a $\sqrt{3}$ que sea correcta con una exactitud de 10^{-3} usando los métodos de bisección, Newton y Secante. Determine en primer lugar el número de iteraciones necesarias en cada caso. Sugerencia: Considere la función $f(x) = x^2 - 3$.

Problema 5: Sea $f(x) = x^3 + 4x^2 - 10$. La ecuación f(x) = 0 tiene una raíz $r \in [1, 2]$.

- a) Mostrar que las siguientes funciones tienen punto fijo en r

 - (i) $g_1(x) = x x^3 4x^2 + 10$. (iv) $g_4(x) = (10/(x+4))^{1/2}$ (ii) $g_2(x) = (10/x 4x)^{1/2}$. (v) $g_5(x) = x (x^3 + 4x^2 10)/(3x^2 + 8x)$.
 - (iii) $g_3(x) = \frac{1}{2}(10 x^3)^{1/2}$.
- b) Realice 4 iteraciones con el método de punto fijo, si es posible, en las funciones del item anterior, comenzando con $x_0 = 1.5$.
- c) Analice la convergencia en cada caso dado en (a).

Problema 6: Se quiere usar la fórmula de iteración $x_{n+1} = 2^{x_n-1}$ para resolver la ecuación $2x = 2^x$. Investigar si converge; en caso afirmativo estudiar hacia qué valores lo hace y para qué elecciones de x_0 .

Problema 7: Demuestre que las siguientes funciones son contractivas y determine el valor del λ óptimo (de la definición de aplicación contractiva) en cada caso.

- a) $(1+x^2)^{-1}$ sonbre un intervalo arbitrario.
- b) x/2 sobre $1 \le x \le 5$.
- c) $\arctan(x)$ sobre un intervalo arbitrario que excluya al cero.
- d) $|x|^{2/3}$ sobre $|x| \le 1/3$.

Problema 8: Sea p > 0, calcule el valor de $\sqrt{p + \sqrt{p + \sqrt{p + \dots}}}$. Ayuda: Note que la expresión dada puede interpretarse como

$$\lim_{n \to \infty} x_n, \quad x_1 = \sqrt{p}, \quad x_2 = \sqrt{p + \sqrt{p}}, \text{ etc.}$$