
The TIB3 Hash

Miguel Montes Daniel Penazzi1

October 2008

Abstract

We describe here the family of hash functions TIB3-224,256,384,512.
We give their specifications first, then some motivations for the designs,
their resistance against attacks, and performance figures.

1Universidad Nacional de Córdoba, Facultad de Matemática, Astronomı́a y F́ısica,
Córdoba, Argentina, Haya de la Torre y Medina Allende, +54-351-4334051/363,e-mail:
miguel.montes@gmail.com,penazzi@mate.uncor.edu

1

Contents

1 Introduction 4
1.1 Notation . 4

2 Specification 4
2.1 Overview . 4
2.2 The General Scheme . 5
2.3 The Block Cipher for the 256 bit case 6

2.3.1 Key Expansion . 7
2.3.2 Expansion of LK ⊕RK 7
2.3.3 I/O specification . 8

2.4 The Block Cipher for the 512 bit case 8
2.4.1 I/O specification . 10

2.5 IVs . 10

3 Rationale for the design 12
3.1 The 3× 3 S-box . 13
3.2 Diffusion . 15
3.3 Key Expansion . 15
3.4 Round keys . 16
3.5 The number of Rounds . 16
3.6 The padding and the final iteration 17

4 Ease of Replacement of SHA2 17

5 Security 18
5.1 Resistance of the general scheme 18

5.1.1 Collision Resistance of the general scheme in the black-
box model . 18

5.1.2 Preimage Resistance of the general scheme in the black-
box model . 20

5.1.3 Resistance of the general scheme against Joux’s attack . . 20
5.1.4 Resistance of the general scheme against Kelsey-Schneier’s

attack . 22
5.2 Differential Attacks . 22
5.3 Algebraic Attacks . 24
5.4 Fixed Points . 25

6 Performance 25
6.1 Performance on 64-bit processors 25

6.1.1 Performance on the reference platform 25
6.1.2 Performance On Linux 64-bits 28

6.2 Performance on 32-bit processors 29
6.2.1 32-bit restricted environment 31

6.3 Performance on 8-bit processors 32

2

6.3.1 Data Memory requirements 32
6.3.2 General Considerations 32
6.3.3 Efficiency on an ideal model 33
6.3.4 Simulated implementation 34

6.4 Hardware Implementation . 35

3

1 Introduction

1.1 Notation

GF (q) denotes the finite field with q elements.
ZZ denotes the integers.
ZZ/(n) the integers mod n.
+ means the sum in ZZ/(n) for n = 264 or n = 232.
⊕ is the sum of GF (2) or of GF (2)n depending on the context (i.e., the xor

bit a bit).
a<<r means right shift by r bits, i.e., multiplication by 2r.
a>>r means left shift by r bits, i.e., the integer part of the division of a by

2r.
a||b is the concatenation of words a and b.

2 Specification

Here we specify the design of the new family of hash functions TIB3-224,256,384
and 512.

2.1 Overview

The hash functions described here all are based on a generalization of the
Merkle-Damg̊ard construction.

We explain in more detail below, but here we give a general idea of the hash
function.

Let’s review first the current standard, SHA-256. As a high level SHA-256
can be described as an iterative hash function with the Merkle-Damg̊ard scheme
in which the underlying compression function is based on the Davies-Meyer
scheme applied to a 256-bit block cipher constructed following an unbalanced
Feistel design, source-heavy. The cipher uses a mix of xors, sums and special
non-linear compression functions. The expansion of the key is done by means
of an LFSR-like expansion but with a mix of xors, sums and rotations. The
expansion is invertible in the sense that it uses 16 32-bit words that are expanded
into 64 32-bits words in such a way that given for example the last 16 words
the recursion can be worked backwards to get again all the words.

TIB3 shares some high level characteristics with SHA256, but with added
security features so an attack on SHA256 is unlikely to extend to TIB3 . The
main security features are:

1) Besides the usual previous hash and current message block, the compres-
sion function also uses the number of bits processed and the previous message
block.

2) The last iteration is done using a different scheme than Davies-Meyer, to
prevent extension attacks.

3) The underlying block cipher is an SPN cipher instead of an unbalanced
Feistel, and it uses, besides xors and sums, non-linear bijective Sboxes.

4

4) The expansion of the key is done in such a way that a backward recursion
is unlikely to succeed.

We will go now into the details.

2.2 The General Scheme

As outlined above, TIB3 uses a block cipher, which we describe in the next
section. Here we described how it is used.

The block cipher is a block cipher that can be salted, i.e., we have a family
of functions {Es : {0, 1}k × {0, 1}n 7→ {0, 1}n : (K,P) 7→ Es

K(P)}s∈S , where
for each s ∈ S, Es

K(P) encrypts P with the key K. (the idea is that s does
not change the security, and it can be under the control of an adversary. In
our scheme s is used to change slightly the expansion of the key into the round
keys). We use S = {0, 1}L, and assume that k is even and call r = k

2 .
Let M be a message of bitlength `. Set t = d `

r e.(here dxe is the least integer
greater than or equal to x). Divide the first (t − 1)r bits of M into blocks
m1, ...,mt−1, each of length r. (if t = 1, then there is nothing here). If ` is a
multiple of r (i.e. t = `

r exactly), then let mt be the last r bits of M . Otherwise,
construct mt by taking the last `− r(t− 1) bits of M , append a 1, and then 0s
as needed to complete r bits. Finally, construct a last block mt+1 that consists
of ` mod 2L in the first L bits,followed by r − L zeroes.

Define:

`i =

{
i.r mod L i = 1, ..., t− 1
` mod L i = t
0 i = t+ 1

Let ĥ =

r−n︷︸︸︷
0...0 ||h be the extension of an element of {0, 1}n to an element of

{0, 1}r by appending zeroes to the left.
Let h0 ∈ {0, 1}n and and m0 ∈ {0, 1}r be IVs and define for i ≥ 1:

hi =

{
E`i

mi||mi−1
(hi−1)⊕ hi−1 if i ≤ t

E`i

mi⊕ĥi−1||mi−1
(hi−1)⊕ hi−1 if i = t+ 1

Then H(M) is defined to be ht+1 (in the cases of length 256 and 512) or the
truncation to the leftmost 224 (resp. 384) digits of ht+1 in the case of length
224. (resp 384).

In all our cases, L = 64, and in the case of TIB3-256 (and TIB3-224),
k = 1024 and n = 256. In the case of TIB3-521 (and TIB3-384), k = 2048 and
n = 512.

The 224 bit version is the 256 version with different IVs and truncated, but
the block cipher used is the same. The 384 version is the 512 version with
different IVs and truncated, but the block cipher is the same. The block cipher
for the 512 version is based on the 256 version. So we will start by explaining
the 256 version.

5

2.3 The Block Cipher for the 256 bit case

Now we are going to describe a block cipher with encryption block of 256 bits,
and key size 1024 bits with salt of 64 bits. We want to emphasize that the
block cipher was designed taking into account that it was going to be used as
a building block within a hash function and not as a block cipher per se. In
particular, we are not claiming 1024-bit security, and because of the way we
are going to use it, the key expansion treats some bits of the key in a different
manner than others, which for a general purpose block cipher it would be a bad
idea.

The cipher has 16 rounds, and all the rounds are equal. The round is a
substitution permutation network: xor a round key, pass bits through Sboxes,
spread the local changes by means of a series of xors, shifts and 32-bit sums.

The structure of the round is not symmetrical: if we think of the 256 bits
as four 64-bit words, then not every word is treated in the same manner. A
permutation of the words at the end of the rounds ensures that at the end of
each block of 4 rounds all words have been treated similarly. Let’s denote the
four sixty-words as A,C,E and G.

At the beginning of the round C is xored to G. (this in fact was thought
originally to be part of the diffusion of the previous round, but for efficiency
reasons is put here.)

A,C,E and G are xored with some round keys,and then the bits of A,C and
E are passed through sixty-four 3-by-3 Sboxes.

The passage through the Sboxes is done in a bitslice way, like Serpent does
with their 4 by 4 Sboxes. Namely, bits 0 of A,C and E go through one Sbox,
bits 1 of A,C and E go through another Sbox, etc. The Sboxes are all the same:
if we represent 000 as 0, 001 as 1, 010 as 2, etc, then it is the Sbox 64170352.
i.e., 0 goes to 6, 1 goes to 4, 2 to 1, etc. We denote this as Sbox(A,C,E).
Meanwhile, G is subjected to a transformation PHTX(G) that mixes its bits.

The transformation is a mix of xors, 32-bit sums and shifts. Given a 64 bit word
D, viewed as an integer in {0, 1, ..., 264 − 1}, we denote D<<a the left shift by
a, i.e., the multiplication modulo 264 of D by 2a, and D>>a is the right shift by
a, i.e., the integer part of the division of D by 2a. + denotes the sum modulo
264 and ⊕ the xor bit a bit.

Given a 64 bit word D, we define D∗ = PHTX(D) to be the function:

D̃ = D + (D<<32) + (D<<47)
D∗ = D̃ ⊕ (D̃>>32)⊕ (D̃>>43)

We call this function a “PHTX” function, because of its similarity with the
usual PHT function of two words (L,H) 7→ (L + 2H,L + H), except that we
have not only + but also some shifts and xors.

After A,C, and E have gone through the Sboxes and G through the PHTX
function, we spread the changes across some of the words: we pass the new C
through the PHTX function, and then add G to A and E to G. The addition

6

used here is not the addition of ZZ/(264), but rather the addition of the group
(ZZ/(232))2, i.e., two parallel 32-bit additions. After this, we shift the words to
the left for the next round: (A,C,E,G) = (C,E,G,A).

If we denote the addition of (ZZ/(232))2 as +̃, then the entire round is:
(denoting assignment by :=)

G := G⊕ C
(A,C,E,G) := (A,C,E,G)⊕ roundkeys

(A,C,E) := Sbox(A,C,E)
G := PHTX(G)
C := PHTX(C)
A := A+̃G
G := E+̃G

(A,C,E,G) := (C,E,G,A)

2.3.1 Key Expansion

Because of the way the cipher is going to be used, we think of the key as
consisting of a left part and a right part: K = (LK,RK), each of 512 bits.
(recall that the current block will be put into LK and the previous block into
RK)

LK ⊕ RK is expanded to 2048 bits under the control of RK, in a way
described below. Also, LK and RK by themselves are used as part of the
round keys.

If we denote the expansion of LK⊕RK under the control ofRK as sixty-four-
bits words D0, ..., D31, and denote LK as the sixty-four-bit words LK0, ..., LK7

and similarly with RK, then the 64 round keys are:
Round 1 Keys: D0, LK0, D1, LK0 Round 2 Keys: D2, LK1, D3, LK1

Round 3 Keys: D4, LK2, D5, LK2 Round 4 Keys: D6, LK3, D7, LK3

Round 5 Keys: D8, LK4, D9, LK4 Round 6 Keys: D10, LK5, D11, LK5

Round 7 Keys: D12, LK6, D13, LK6 Round 8 Keys: D14, LK7, D15, LK7

Round 9 Keys: RK0, D16, RK1, D16 Round 10 Keys: RK2, D17, RK3, D17

Round 11 Keys: RK4, D18, RK5, D18 Round 12 Keys: RK6, D19, RK7, D19

Round 13 Keys: D20, D21, D22, D21 Round 14 Keys: D23, D24, D25, D24

Round 15 Keys: D26, D27, D28, D27 Round 16 Keys: D29, D30, D31, D30

2.3.2 Expansion of LK ⊕RK

Expansion of LK⊕RK is done by means of a modified LFSR: Consider the fol-
lowing function ψ that takes as inputs four 64-bit words W,X, Y, Z and outputs
one 64 bit word V = ψ(W,X, Y, Z) by means of the following transformations:

V := (Y + (Z<<32))⊕W ⊕X ⊕ (Z>>32)

7

V := V + (V <<32) + (V <<43)
V := V ⊕ (V >>39)

If LK ⊕RK is loaded into D0, ..., D7, we define D8 and D9 to be:

D8 = ψ(D3 ⊕RK0, D4 ⊕RK1, D5 ⊕RK2, D1 ⊕RK3)
D9 = ψ(D2 ⊕RK4 ⊕ const,D7 ⊕RK5 ⊕ salt,D6 ⊕RK7, D0 ⊕RK6)

where salt is the salt value and const is the constant 0x428a2f98d728ae22
(the first round constant of SHA512). Once obtained these ten 64-bit words
D0, D1, ..., D9, we do a recursion for i ≥ 10 by means ofDi = ψ(Di−10, Di−8, Di−3, Di−2)
(the polynomial x10 + x8 + x3 + x2 + 1 is primitive).

2.3.3 I/O specification

Each block of 512 bits=64 bytes is read as follows: given the block b0||b1||....||b63,
then b0 + b128 + b2(28)2 + ... + b7(28)7 is loaded into the first 64-bit word,
b8 + b928 + ...+ b15(28)7 is loaded into the second 64-bit word, etc.

The final hash is the content of the registers A,C,E,G at the end of all the
iterations. This is extracted as the following bytes: A&0xFF , (A>>8)&0xFF ,
(A>>16)&0xFF , etc,

2.4 The Block Cipher for the 512 bit case

The block cipher in this case is essentially the same as the one for the 256
bit case except that all the 64-bits words of the 256 bit case are now 128-bit
words. The 32-bit sums are now all 64-bit sums, and there are some other small
differences in the shift amounts and in the diffusion, because due to the larger
size of the block, more effort is needed in order to ensure a good mix. Also,
because 128-bit registers are not common, we prefer to explain the cipher in
terms of 64-bit words. Basically it is the transformation to 64-bit words of the
implementation of the 256 case in 32-bit words.

As before there are 16 rounds.
We write the state now as eight 64-bit words A,B,C,D,E, F,G,H. Each

round is now: (+ is the 64-bit sum in all cases)

G := G⊕ C
H := H ⊕D

(A,B,C,D,E, F,G,H) := (A,B,C,D,E, F,G,H)⊕ roundkeys
(A,C,E) := Sbox(A,C,E)
(B,D,F) := Sbox(B,D,F)

(G,H) := PHTXD(G,H)

8

(C,D) := PHTXD(C,D)
A := A+G

B := B +H

G := E +G

H := F +H

(A,B,C,D,E, F,G,H) := (C,D,E, F,G,H,A,B)

where PHTXD is a ”double” version of PHTX:

PHTXD(L,H) :
H := H ⊕ L
H := PHTX(H)
L := L⊕H
L := PHTX(L)

(here PHTX is the same function defined in the 256 case).
The expansion is again based on a function ϕ which is basically the ψ func-

tion of the 256 case, but with 128-bit arguments instead of 64-bit arguments.
There are some differences in the shift amounts needed because of the larger
size. However, since we have not implemented the code in 128-bit machines,
and in order to have an easier ”map” into the reference implementation (of 64
bits), we list the function with eight 64-bit arguments instead of four 128-bit
arguments and producing two 64-bit outputs instead of one 128-bit output:

(V, V ∗) = ϕ(W,W ∗, X,X∗, Y, Y ∗, Z, Z∗) :

V := W ⊕X ⊕ Y ⊕ Z∗

V ∗ := ((Y ∗ + Z)⊕W ∗ ⊕X∗) + V + (V <<23)
V := V ⊕ (V ∗>>15)

As in the 256 case, we xor the leftmost 512 bits of the key (written LK0, .., LK15)
with the rightmost 512 bits of the key (written RK0, ..., RK15) and put this into
(in this case) sixteen 64-bit words W0, ...,W15.

We compute W16, ...,W19 by:

(W16,W17) := ϕ(♦0,♦1,♦2,♦3)
(W18,W19) := ϕ(♠0,♠1,♠2,♠3)

9

where:

♦0 = (W6 ⊕ LK0,W7 ⊕ LK1)
♦1 = (W8 ⊕ LK2,W9 ⊕ LK3)
♦2 = (W10 ⊕ LK4,W11 ⊕ LK5)
♦3 = (W2 ⊕ LK6,W3 ⊕ LK7)
♠0 = (W4 ⊕ LK8 ⊕ const,W5 ⊕ LK9)
♠1 = (W14 ⊕ LK10 ⊕ salt,W15 ⊕ LK11)
♠2 = (W12 ⊕ LK14,W13 ⊕ LK15)
♠3 = (W0 ⊕ LK12,W1 ⊕ LK13)

where const is again 0x428a2f98d728ae22.
Then we compute Wi, i = 20, ..., 63 by:

(Wi,Wi+1) = ϕ(Wi−20,Wi−19,Wi−16,Wi−15,Wi−6,Wi−5,Wi−4,Wi−3)

The round keys are:
Round 1 Keys: W0,W1, LK0, LK1,W2,W3, LK0, LK1

Round 2 Keys: W4,W5, LK2, LK3,W6,W7, LK2, LK3

Round 3 Keys: W8,W9, LK4, LK5,W10,W11, LK4, LK5

Round 4 Keys: W12,W13, LK6, LK7,W14,W15, LK6, LK7

Round 5 Keys: W16,W17, LK8, LK9,W18,W19, LK8, LK9

Round 6 Keys: W20,W21, LK10, LK11,W22,W23, LK10, LK11

Round 7 Keys: W24,W25, LK12, LK13,W26,W27, LK12, LK13

Round 8 Keys: W28,W29, LK14, LK15,W30,W31, LK14, LK15

Round 9 Keys: RK0, RK1,W32,W33, RK2, RK3,W32,W33

Round 10 Keys: RK4, RK5,W34,W35, RK6, RK7,W34,W35

Round 11 Keys: RK8, RK9,W36,W37, RK10, RK11,W36,W37

Round 12 Keys: RK12, RK13,W38,W39, RK14, RK15,W38,W39

Round 13 Keys: D40, D41, D42, D43, D44, D45, D42, D43

Round 14 Keys: D46, D47, D48, D49, D50, D51, D48, D49

Round 15 Keys: D52, D53, D54, D55, D56, D57, D54, D55

Round 16 Keys: D58, D59, D60, D61, D62, D63, D60, D61

2.4.1 I/O specification

They are the same as in the 256 case, save that the block is 1024 bits long.

2.5 IVs

For each length we need two IVs: one for h0, the other for m0 (the first “previous
block”). Our IVs are based on the IVs for SHA512. Basically the initial hash
h0 for TIB3-512 takes the same words used in the IV for SHA-512. (i.e., eight

10

words), while the h0 for TIB3-384 are those same words but putting the last four
words first and viceversa. m0 for TIB3-512 is the h0 for TIB3− 384 repeated,
and m0 for TIB3-384 is the h0 for TIB3-512 repeated. h0 for TIB3-256 is the
first four words of the h0 of TIB3-512, while the h0 of TIB3-224 is the last four
words of the h0 of TIB3-512. (equivalently, the first four words of TIB3-384).
m0 for TIB3-256 is the h0 for TIB3-224 repeated and viceversa.

Explicitly: (all words are to be read left to right, then top to bottom)

TIB3-256:
h0 consists of the following four 64-bit words:

0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1

m0 consists of the following eight 64-bit words:

0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179
0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179

TIB3-224:
h0 consists of the following four 64-bit words:

0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179

m0 consists of the following eight 64-bit words:

0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1
0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1

TIB3-384:
h0 consists of the following eight 64-bit words:

0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179
0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1

m0 consists of the following sixteen 64-bit words:

0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1
0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179
0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1
0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179

11

TIB3-512:
h0 consists of the following eight 64-bit words:

0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1
0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179

m0 consists of the following sixteen 64-bit words:

0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179
0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1
0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179
0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1

3 Rationale for the design

We consider three possibilities for the top structure of a hash function:
1) A traditional structure that use a block cipher in one of the secure schemes

of [PGV94] as compression function, with a Merkle-Damg̊ard strengthening.
2) Use the same Merkle-Damg̊ard iteration, but with a stream cipher instead

of a block cipher as underlying compression function.
3) Use a different approach altogether. (for example, a belt and mill structure

like Panama or Radio-Gatun).
We felt that approach 3), trying a new kind of structure, was too risky

for the SHA-3 competition, although in the particular case of the belt and
mill structure, it already has some years of exposure, so to use that structure
would not have been that risky. However, we did not “felt at home” with that
structure.

The structure 2) has many good advantages, but altogether, we felt that
keeping a traditional approach was the right choice. However, we added to the
usual design two security features: one: re-use of the previous input block in
the iterative step. Two, use the number of bits processed in the input function.

Of the 12 secure schemes of [PGV94], only four resist all attacks. However,
they are all of the form hi = Ehi−1(∗) ⊕ (?), where ∗ and ? can each be either
mi or mi ⊕ hi−1. However, we wanted to read our message blocks in chunks of
512 bits, and any of these schemes would force us to construct a 512-bit cipher
for a hash function of length 256, which we felt was a misuse of resources. So,
we settled on the popular Davies-Meyer scheme hi = Emi(hi−1)⊕hi−1, used on
all the members of the MDx family, including SHA256 and friends. The Davies-
Meyer scheme is one of the 12 secure schemes of PGV, with the only problem of
vulnerability to a fixed point attack. This is not a problem in the MDx family
due to the Merkle-Damg̊ard strengthening at the end of the message, but just in

12

case we decided to add the processed bits as a salt into the block cipher, which
makes then even this possible problem vanish.

We decided also to use the previous block in the recursion. In the Davies-
Meyer scheme, the attacker has control of the key. In a collision attack, the
attacker will try to get a collision by choosing appropriate message blocks. How-
ever, if each message block is used in two iterations, the attacker will have to
get a collision for the last time the block is used. This mean two things: first,
in the last block for which the attacker tries to get a collision, half the values
of the key cannot be used in the attack (because they are going to be reused in
the next iteration). Second, the values that are used in the attack have already
been used in the previous iteration, which means that the attacker has to set up
a system of equations for the current iteration and the previous one also. This
in fact forces the attacker to work through 32 rounds of the cipher, instead of
just 16.

3.1 The 3× 3 S-box

We wanted in the design to have Sboxes, and not rely only on the non linearity
provided by a combination of xors and sums. Large Sboxes are very good,
but they require the use of huge tables. We wanted the hash to be easily
implemented in low resources environments, so we wanted to use only sums,shifts
and a combination of logical operators like xor, or, and, etc.

This naturally pointed the way for small Sboxes that could be implemented
in a bitsliced way by means of their component boolean functions. The natural
one would be a 4 by 4 Sbox, like Serpent, but the boolean logic of any good
4by4 Sbox is extensive. 3 by3 Sboxes have very short boolean logics.

We asked our S-box to be invertible, to minimize the greatest non trivial
value in the XOR difference table (resistance against differential cryptanalysis),
to minimize the highest non trivial correlation among linear combinations of
input and output bits. (resistance against linear cryptanalysis), to have no
fixed points or opposite fixed points (x 7→ x), and to minimize the number of
times that a difference of one bit in the input translates into a difference of one
bit at the output. These were studied in [FP05], and it turns out they are all
“algebraic”, i.e., they all result form the construction of [Nyb94] of taking the
inverse function over GF (23):

x 7→
{
x−1 if x 6= 0
0 if x = 0

and then pre-compose and/or post-compose with an affine transformation. We
chose the Sbox used in [FP05], which is one of the ones obtained by further
asking that all possible representations as S(x) = (QM .(PMx + Pb)−1 + Qb)
(and with any of the two ways of representing GF (8) as GF (2)[x]/p(x)) either
have QM or PM different from the identity matrix, and such that if XM = I then
Xb 6= 0; that it should sent 0 to either 3,5 or 6 (numbers with hamming weight
two) and that its cycle representation has length 8. Representing 0 = 000, 1 =

13

001, 2 = 010, etc, then the Sbox is (0, 1, 2, 3, 4, 5, 6, 7) 7→ (6, 4, 1, 7, 0, 3, 5, 2) with
cycle representation (06537214). Its weakest representation as a composition of
affine functions and the inverse map is S(x) = A(x+ 1)−1 + 4 with

A =

 0 1 0
0 0 1
1 0 0


and when GF (8) is viewed as GF (2)[x]/(x3+x+1) As a polynomial over GF (8)
it is 6x6 +3x3 +5x4 +7x3 +x2 +4x+6 when GF (8) is viewed as GF (2)[x]/(x3 +
x+ 1) and 7x6 + 4x4 + x2 + 6 when GF (8) is viewed as GF (2)[x]/(x3 + x2 + 1)

Since we are going to implement it in bitsliced mode, its component boolean
functions are relevant: they are:

f(x, y, z) = x⊕ (y ∧ z)
g(x, y, z) = z ⊕ (x ∧ y)
h(x, y, z) = y ⊕ (x ∧ z)

The difference table given by:

(∆x,∆y)→ (#{x ∈ {0, 1}3 : S(x)⊕ S(x⊕∆x) = ∆y})

is:
1 2 3 4 5 6 7

1 0 2 2 0 0 2 2
2 2 0 2 0 2 0 2
3 2 2 0 0 2 2 0
4 0 0 0 2 2 2 2
5 0 2 2 2 2 0 0
6 2 0 2 2 0 2 0
7 2 2 0 2 0 0 2

If a · b is the parity (0 or 1) of the bitwise product of a and b, then the linear
table

(Γx,Γy)→ (#{x ∈ {0, 1}3 : x · Γx = S(x) · Γy} − 4)

is:
1 2 3 4 5 6 7

1 0 2 -2 0 0 2 2
2 2 0 2 0 -2 0 2
3 2 -2 0 0 2 2 0
4 0 0 0 -2 -2 2 -2
5 0 -2 -2 2 -2 0 0
6 2 0 -2 -2 0 -2 0
7 -2 -2 0 -2 0 0 2

14

3.2 Diffusion

We wanted a diffusion that would involve operations outside of GF (8), to pre-
vent algebraic attacks. A very good idea would be to use some combinations
of multiplications and perhaps variable rotations. However, these operations,
although reasonably fast in the target Core2Duo machine, became unreasonable
in constrained environments. So we wanted the diffusion to consists only on a
combination of sums, xors and shifts. Sums were necessary to add extra nonlin-
earity to the small 3by3 Sboxes and to prevent algebraic attacks. We excluded
rotations because we wanted the code to work well on both 32 bit and 64 bits
machines, and rotations of 64 bit words are slow in 32 bits machines and vicev-
ersa. However, shifts of at least 32 bits work well on both machines, although
it is true that the diffusion could have been better using other shifts (and ro-
tations). The diffusion we settled on is simple enough but quickly produce a
number of active Sboxes if small differences are not deal with immediately.

3.3 Key Expansion

The key expansion was a balance act between security and speed. The more
bits we used that come from a complex expansion, the better security, but the
worst the speed. So we settled on expanding part of the key, and using other
parts just by repeating them. For the expansion itself we used originally a linear
code, because in that case the minimum nonzero distance equals the minimum
weight. This is an advantage to both the attacker and the designer, but to the
designer is an advantage only if he can prove lower bounds. For the codes we
tried either we could not prove lower bounds or they were too slow. We decided
to use a nonlinear code. The minimum nonzero hamming distance of a linear
code is not the minimum weight and makes the attacker job more difficult. (in
a linear expansion, the attacker can try vectors that have some small Hamming
weight and satisfy some conditions, then simply add it to an existing message
to find another message that collides. In a nonlinear expansion, he or she has
to work with pairs of messages from the start). Again, we had to balance speed
and security. The one we settled on passed some test we threw at it that showed
that apparently any small difference at the start will grow to a big difference by
the end, which is the critical portion of a a differential attack, since a collision
has to be produced there. The attacker then might try to find a small weight
at the end, and simply run the recursion backward. But here we added the
extra security feature of having a recursion of length 10, but only provide 8
inputs. That is, in order to work the recursion backward, the attacker has to fix
a target D23, ..., D31 that s/he wants to obtain. Working backwards, he or she
can find suitables D0, .., D9 that will produce the targets. However, these are
not necessarily acceptable, since s/he can only control D0, ..., D7, while D8 and
D9 depend on them. So, after working the recursion backward, the attacker has
to verify that the results are compatible verifying the equations that produce
D8 and D9 from D0, ..., D7. This will happen only with probability 2−128 if the
targets are random. So actually the attacker will have to develop a method to

15

work this out.
Moreover, this feature of widening the window of recursion allow us to in-

troduce constants in the recursion, that prevent slide attacks.

3.4 Round keys

The order of the round keys was chosen again with regard to implementation
considerations: to increase speed, as we said above, we reuse parts of the key
instead of expanding. But we wanted to reuse them in the same round, so as
to not reload them. Since there is a difference in the treatment of A,C,E with
that of G, we felt it was safe to use the same key once on one of A,C,E, and a
second time on G.

If we were designing a cipher solely as a cipher, the treatment of LK and
RK should have been more symmetric. However, because of the way the cipher
is going to be used, we actually wanted them to be asymmetric, so that the way
a message block is used the first time is different from the way it is used the
second time.

3.5 The number of Rounds

Although after 4 rounds every part of the state has been treated similarly, so
in theory we could take for example an odd number of rounds, it seems better
to have a multiple of 4 rounds, so that after the whole rounds every part of
the cipher is treated As explained below, if the attacker lets a small difference
propagate, very soon a critical mass of active Sboxes makes the attack pass the
2128 work factor. Once the number of active Sboxes became critical, two or
three rounds are enough. However, the attacker will obviously try to control
the differences. Since the attacker has control of the key, there can be 1024 bits
with very low weight. The expansion of the key will multiply this low weight
into heavier weights, but it needs “time” to do so. In order to properly give
the expansion the needed time, and taking into account that we also wanted
more use of both the current and previous block we felt that 16 rounds allow the
expansion of the key to do its job, and give an adequate margin of security given
that the attacker has control of the key. For comparison, the 256 bit version
of Rijndael (also an SPN cipher) has 14 rounds. Since the first multiple of 4
greater than 14 is 16 this gave us another reason for this number. However,
taking into account that each block is used through 32 rounds the safety margin
is higher.

A weakened version of the algorithm would be a version with less numbers of
rounds. However, for a proper assessment of a weakened version that takes into
account the expansion, the rounds that are eliminated should be the first ones,
e.g a 12-round weakened version of the algorithm should have the expansion as
it is, and simply eliminate rounds 1-4. (then D0, ..D7 for example would not be
used directly in the key rounds).

On the other hand the algorithm can be readily strengthened if the need
arise. A strengthened version of the algorithm would include 4 more rounds (or

16

a multiple of 4), and the round keys for those rounds would came from simply
continuing the expansion of D into D32, ..., etc.

We think that the 20-round version of the algorithm would be much stronger
with respect to the 16 round algorithm than the strength of the 16 round version
versus the 12 round version. The slow in speed due to four more rounds plus 12
more rounds of expansion however could be too much, and overall we felt that
the 16 round version is strong enough.

3.6 The padding and the final iteration

A problem with the design that we chose is that since we want each message
block to be processed twice we need to necessarily add an extra block, regardless
of the length of the message. We do the usual padding of appending a 1 followed
by 0s as needed, with one exception: if the length of the message is exactly a
multiple of 512, we do not pad. We could do that, but in that case the 1 would
go necessarily in the next block, which anyway will have a codification of the
length of the message. Thus, adding or not an extra 1 merely changes the
codification of the length, so it is not needed.

As for the last iteration, we change the way it is processed to avoid any kind
of length extension attack: if we were not to do that, an attacker that knows
the final hash (but not the whole message) and the length of the message would
know the “previous block”, and can append any new blocks as needed, since in
that case the original final hash will be an intermediate hash. The attacker can
claim that since he knows the new final hash he knows the message. This can be
of relevance in some applications. But since we change the way the last iteration
is done with respect to the previous ones, the final hash is not an intermediate
hash, and this attack cannot be mounted.

4 Ease of Replacement of SHA2

Despite the internal differences, TIB3 as a black box behaves exactly like SHA2.
By this we mean that it also has an iterated block structure, the size of the
blocks (versions 224/256 and 384/512) are the same for the SHA2 family and
the size of the partial hashes is also the same. This means that if there is
a need for a replacement of the SHA2 family TIB3 should be able to do it
straightforwardly. (the only basic difference in a concrete application is that
TIB3 uses more internal memory to hold the previous block and the heavier
expansion, but externally it still reads one block at a time).

In particular, from the point of view of applications, any general construc-
tion that uses the SHA2 family in a general way (e.g, digital signatures, key
derivation, pseudorandom bit generators, etc) can also use the TIB3 family in
exactly the same way. In particular, the HMAC construction is applicable to
TIB3 in the same way as with SHA2.

It may have other specific constructions that take advantage that there is
a “previous block” IV that can be used as part of a secret for example, but

17

we have not investigated its suitability and are not making any claims at the
moment.

5 Security

5.1 Resistance of the general scheme

5.1.1 Collision Resistance of the general scheme in the black-box
model

We could divide the proof in two parts: one showing the resistance of the general
scheme given a compression resistant compression function of the type we use,
doing an analogous to the Merkle-Damg̊ard theorem, and a second part proving
the resistance of the compression function we use, given a general block cipher
with the characteristics we need, doing an analogous of the security proof of the
Davies-Meyer scheme.

If one looks at the original proofs of the Merkle-Damg̊ard and Davies-Meyer
schemes one sees that the differences in the salt and the previous block do not
affect them negatively, so they hold for our scheme.

In the interest of completeness however (and to explicitly show that our
statement above is true), we include here an integrated proof of the security of
the whole scheme, under the assumption of a random block cipher. (we repeat
that this is basically the same classical proofs).

That is, we have a collection {Es}s of random block ciphers Es : {0, 1}k ×
{0, 1}n 7→ {0, 1}n. We denote by Ds their inverses. (i.e., for each K ∈ {0, 1}k,
P 7→ Es

K(P) is a permutation (selected randomly from all permutations) of
{0, 1}n and Ds

K is its inverse.
An adversary A is given access to oracles Es and Ds for each s, and we

bound its probability of success in terms of the number of queries made to the
oracles.

The random block cipher can be modeled in the following way: for each s
and each k, initially Es

k is undefined, with domain and range empty. Whenever
a query to encrypt an element x by Es

k is made, the oracle checks to see if x is
in the domain of Es

k. It it is, it returns the element of the range associated to x.
Otherwise, it returns a random element y of the complement of the range, and
add x to the domain, y to the range and associates x with y. Whenever a query
to decrypt an element y with Ds

k is made, the oracle checks if it is in the range,
in that case it returns the x associated, otherwise it returns a random element
x of the complement of the domain, adds x to the domain and y to the range
and associate x with y. (this can be simplified if one assumes that the adversary
never does pointless queries, i.e., if the adversary has already queried the oracle
for the encryption of x (and getting y as an answer), the adversary will not
query again for x, nor will it query for the decryption of y. (and similarly if the
first query was actually for the decryption of y). From now on we make this
assumption.

18

Recall that our scheme makes a hash function HE out of a block cipher E
in the manner that we described earlier. Adv(q) will denote the maximum
possible advantage an adversary has in finding collisions if he or she does at
most q queries i.e., the maximum (over all adversaries that make at most q
queries to an oracle that selects E at random) of the probability that such an
adversary will find M 6= M∗ with HE(M) = HE(M∗).

Theorem: Adv(q) ≤ q(q−1)
2n

Proof: The proof is basically the same as the one on [BRS02], adapted to
our case.

By hypothesis A does (at most) q queries. If q > 2n−1, then Adv(q) ≤ 1 <
q(q+1)

2n so there is nothing to prove. So we may assume q ≤ 2n−1.
Let Qi denote (si, ki, xi, yi) if the ith query is a query to Esi to encrypt xi

under the key ki, and the oracle returns yi, or if the ith query is a query to Dsi

to decrypt yi under the key ki and the oracle returns xi.
IfA is successful it will produce messagesM 6= M∗ withHE(M) 6= HE(M∗).
Consider two cases:
Case 1: The messages M and M∗ have different length.
In this case, since the the last block contains the length we have that mt+1 6=

m∗t∗+1.
The last iteration always use the block cipher E0. The key that is used is

the xor of the last block with the zero extension of the previous hash. The
length of the message is put in the last block in a place where the xor with
the previous hash does not affect it, so the keys will remain different.Since
HE(M) = HE(M∗), we must have then that:

E0
mt+1⊕ĥt||mt

(ht)⊕ ht = E0
m∗

t∗+1⊕ĥ∗
t∗ ||m

∗
t∗

(h∗t∗)⊕ h∗t∗

Now, at some moment A must have queried the oracle in order to get the
left hand of that equation. Let Qi be that query, i.e., si = 0,ki = mt+1⊕ ĥt||mt,
xi = ht and yi = E0

ki
(xi).

Similarly at some other moment j A must have queried to get the right hand
side. (they must be different since ki 6= kj). Without loss of generality we can
assume that j < i. So, on the ith query both si = 0 and Qj are already fixed.
When making the query, A can do one of the following:

a) Give the oracle xi = ht and the key ki = mt+1 ⊕ ĥt||mt. The oracle will
randomly return yi from the complement of the range. For the collision to hold
this random value must satisfy yi = xi ⊕ yj ⊕ xj . Note that if xi ⊕ yj ⊕ xj

is already in the range so far defined, this cannot happen, but A can make
sure that xi ⊕ yj ⊕ xj is not in the range by carefully selecting xi. The oracle
selects yi at random from a set of size at least 2n−(i−1), so the probability that
yi = xi⊕yj⊕xj for a fixed j < i is at most 1

2n−(i−1) <
1

2n−q ≤
1

2n−2n−1 = 1
2n−1 .

However, any j < i for which sj = 0 will be a ”good” j, so in the worst
case we have to sum this over all j < i, and we get a probability bounded
by 1

2n−1

∑
j<i j ≤

1
2n−1

∑
j<q j = q(q−1)

2n b) Give the oracle yi and key ki =

19

mt+1 ⊕ ẑi,j ||mt, where zi,j = yi ⊕ yj ⊕ xj . The oracle will randomly return
xi from the complement of the domain. For the collision to hold this xi must
satisfy xi = yi ⊕ yj ⊕ xj , which again happens with probability bounded by

1
2n−(i−1) <

1
2n−1 for each fixed j and q(q−1)

2n overall.

Case 2: M and M∗ have the same length. In this case t = t∗ and we
have the following subcases: Subcase 2a: ht 6= h∗t Since there is a collision, we

must have then as in the previous case that

E0
mt+1⊕ĥt||mt

(ht)⊕ ht = E0
m∗

t∗+1⊕ĥ∗
t∗ ||m

∗
t∗

(h∗t∗)⊕ h∗t∗

Since ht 6= h∗t , the queries for the left hand and the right hand of the equation
are different queries. Using the same argument as in the previous case we again
bound the probability of this case by q(q−1)

2n .
Subcase 2b: ht = h∗t In this case there must be a collision before the last

iteration: Since we are assuming M 6= M∗, there must be some b with mb 6= m∗b .
Then either hb = h∗b and we have a collision here, or hb 6= h∗b , but since ht = h∗t ,
then there must be some c > b with hc−1 6= h∗c−1 but with hc = h∗c . In any case,
since c < t, A must find a collision of the form

E`c

mc||mc−1
(hc−1)⊕ hc−1 = E`c

m∗
c ||m∗

c−1
(h∗c−1)⊕ h∗c−1

Since either mc 6= m∗c or hc 6= h∗c , the queries in order to get data for the left part
and the right part of the equation must be different. Using a similar argument
than in case 1 (except that here the key ki is independent of xi) we get again
that the probability of obtaining a collision is bounded by q(q−1)

2n QED.

5.1.2 Preimage Resistance of the general scheme in the black-box
model

Any attacker that wants now to find preimages with at most q queries has
advantage bounded by q

2n−1 . The proof is again basically the classical one,
and is similar to the previous one except that now since the attacker wants
preimage rather than collision, basically the sums over j that are done in the
previous argument are not there, and the bounds are simply q/2n−1 instead of
the summatory obtained there that was quadratic in q. Since it is similar to
both the classical proofs and the previous, we skip the details.

5.1.3 Resistance of the general scheme against Joux’s attack

In [Jou04], A. Joux introduced an attack to find multicollisions in less time
than what was expected. Namely, to find two messages that collide on a hash
function of length n by the birthday paradox one requires time O(2

n
2). To

find J messages that all collide one would expect time exponential in both n
and J , however if the hash function is constructed using the Merkle-Damg̊ard

20

scheme, Joux proved that it can be done in time exponential in n but logarithmic
in J . Namely, the attack finds 2k messages that collide in O(k2

n
2). Namely,

if f is the compression function used in the iteration hi = f(hi−1,mi), find
m0

1 6= m1
1 with f(h0,m

0
1) = f(h0,m

1
1), that is h0

1 = h1
1. Then find m0

2 6= m1
2

with f(h0
1,m

0
2) = f(h0

1,m
1
2), that is h0

2 = h1
2. Continue k times. Then all the 2k

messages mr1
1 ||...||m

rk

k where (r1, ..., rk) ∈ {0, 1}k collide.
Our recursion is not of the form hi = f(hi−1,mi), so the attack “as is”

cannot be applied and it needs to be modified.
The “obvious” modification would be, if we denote by fi the compression

function in the ith iteration, to find m0
1 6= m1

1 such that f1(h0,m
0
1,m0) =

f1(h0,m
1
1,m0). Calling that h1, then find a collision between the two func-

tions ? 7→ f2(h1, ?,m
0
1) and ? 7→ f2(h1, ?,m

1
1), which is not harder than finding

a collision of the same function. i.e, find m0
2 6= m1

2 with f2(h1,m
0
2,m

0
1) =

f2(h1,m
1
2,m

1
1). Then, the messages m0

1||m0
2 and m1

1||m1
2 do produce a partial

internal collision, i.e., h0
2 = h1

2. However it is NOT true that they also collide
with the messages m0

1||m1
2 and m1

1||m0
2. So the exponential explosion of the

Joux attack does not happen. For this modification of the attack to succeed,
one would have to find m0

2 6= m1
2 such that f2(h1,m

0
2,m

0
1) = f2(h1,m

0
2,m

1
1) =

f2(h1,m
1
2,m

0
1) = f2(h1,m

1
2,m

1
1). If f2 is random this cannot be done in time

O(2
n
2), so a Joux-like attack of this form that doesn’t take the internals of f

into consideration apparently cannot succeed. The equation f2(h1,m
0
2,m

0
1) =

f2(h1,m
0
2,m

1
1) = f2(h1,m

1
2,m

0
1) = f2(h1,m

1
2,m

1
1) can be modeled in the folow-

ing way: let random0(x) = f2(h1, x,m
0
1) and random1(x) = f2(h1, x,m

1
1).

Then one needs x 6= y with random0(x) = random0(y) = random1(x) =
random1(y). This four-way collision is different than quadruple collision (i.e.
a multicollision of cardinality 4) for random0 (where we would simply ask
for x, y, z, w all different with random0(x) = random0(y) = random0(z) =
random0(w)). The latter happens with high probability when taking 2cn sam-
ples with c about 3

4 . The four way collision random0(x) = random0(y) =
random1(x) = random1(y) happens only with negligible probability, even when
taking more than 2n samples: when taking m samples (for each of random0 and
random1) the probability of NOT finding a four way collision is

m∏
i=1

(
(1− i

2n
) +

i

2n
.(1− 1

2n
) +

i

22n
.(1− 1

2n
)
)

which is very near 1 even for high values (∼ 2n) of m. (for example, when
n = 10 the probability goes below 0.999000 only when m > 1465, which is
actually higher than 2n. With m = 21.5n the probability of not finding a four
way collision is still 60%) When n = 20 and m = 228 the probability of not
finding a 4 way collision is 96.9233%

As an example of a test run we did using a couple of random functions,
when n = 10, taking a sample of m = 768(∼ 20.958n) one finds 268 collisions for
one function, 293 for the other, 275 collisions between them, 68 triple collisions
for one and 78 triple collisions for the other, and 13 quadruple collisions for
one function and 22 for the other, but no four-way collisions. When taking

21

m = 100000 (this is about 21.6n) we found TWO four-way collisions. When
m = 219(= 22n−1) we found 119 four way collisions.

So it appears that at least this generalization of the Joux attack cannot
succeed with work less than O(2n). However, another modification of the Joux
attack does work: from our hash function H the attacker defines a new hash
function: H∗ given by H∗(m1,m2, ...) = H(m1, q,m2, q,m3, q, ...) where q is a
fixed block. Any collision or multicollision of H∗ is clearly also a collision or
multicollision of H. And H∗ can now be (almost) put in the framework of the
Merkle-Damg̊ard scheme. (the ”almost” part has to do with the fact that we
use the bits processed. However, this can be bypassed in the Joux attack). The
difference is that now each iteration of H∗ is two iterations of H. From the point
of view of a black box attack, it does not make any difference between using
for example ? 7→ f1(h0, ?,m0) or of using ? 7→ f2(f1(h0, ?,m0), q, ?) and so the
Joux attack, applied to H∗ produces multicollisions for H. (if we abandon the
black box model however, and instead of trying to find collisions by the birthday
paradox the attacker uses some of the innerworkings of the function, then there
is clearly a difference. In our case, the attacker will have to work with twice the
block size, 32 rounds, and will only be able to control one of the input blocks).

5.1.4 Resistance of the general scheme against Kelsey-Schneier’s at-
tack

In [KS05], Kelsey and Schneier introduced a theoretical attack that shows that
on hashes that use the Merkle-Damg̊ard iteration it is possible to find a second
preimage for a message of length 2k with k×2

n
2 +1+2n−k+1 work. The basic idea

is, given a target message, to build expandable messages that can be linked to
one of the intermediate hash values of the hash function for the target message.

As in the Joux attack, the Kelsey-Schneier attack is not directly applicable to
our scheme, but again it can be modified and applied to the hash H∗. However,
it seems that this would translate into an attack on the hash function H only
if the target message is also of the form (m1, q,m2, q,m3, q, ...). Nevertheless
there might be a further modification of the attack for the general case.

5.2 Differential Attacks

The attacker tries to find a collision by trying to track differentials, either for-
ward or backward. The attacker will try to generate a non-zero input difference
in the block messages that will get cancelled, leading to a collision.

The attacker might try for a one block-one iteration collision: some difference
in one message block that gets cancelled within one iteration. This is however
impossible in our scheme because, if two messages differ in only one block, say
the ith, if the attacker finds a collision in the ith iteration, since the block will
be reused in the (i + 1)th iteration, the attacker has to get a second collision
for that iteration too. Or else, he has to get a differential in the ith iteration
that will get canceled in the (i+ 1)th iteration. In either way, the attacker has
to work through at least two iterations. (and 32 rounds)

22

Even so, if the attacker does not want to have to work with more iterations,
all other blocks will have to be the same. But then he cannot control several
key rounds of the ith iteration and several key rounds of the (i+ 1)th iteration.
If the portion of the state paired up with those portions of the key rounds does
not have a difference, then the attacker is very happy, but if not, he or she
cannot control it, and the difference will propagate. So the attacker has to try
to carefully select the trail the differences will take.

Also, the double use of a block effectively multiplies the expansion of the
block: for example, in MD4 the block was expanded by three, by simple repe-
titions. This proved to be inadequate. In MD5 the block is expanded by four,
again with simple repetitions, and this simple extra expansion proved to be far
more resistant (more or less a decade more than MD4), altough eventually bro-
ken. SHA-1 expands by 5, and in a more complex way than MD5, but still it
was broken. SHA-256 expands by 4, but in a far more complex way than SHA-1.
Our expansion of the 1024-bit key is also by a factor of 4, but we must take
into consideration the way the cipher is going to be used in the hash function,
and ask how many times a single block of 512 bits is expanded, to get an idea
of the work of the attacker in trying to control differences. The first time a
block is used, it will be xored with the previous block and expanded into 32
sixty-four-bit words, but 8 of those words are used twice, so this is in fact an
expansion into 40 words. The block itself is used “as is” twice, so the first time
it is used we have that it has been used 7 times in one form or another. The
second time it is used it is again expanded 5 times, and used “as is” once, for
a total of 6 times, and 13 times overall. Further, in the expansion itself it is
used in a different way than the first time. Moreover, due to the expansion, any
single change propagates to many different round keys.

Let’s take a closer look at the cipher: We can picture the cipher as this:

A ? ? ? ? ? ?
C ? ? ? ? ? ?
E ? ? ? ? ? ?
G ? ? ? ? ? ?

The passage through the Sboxes produce changes (restricted to A,C,E) in a
vertical, column-wise way. G suffers in the meantime horizontal changes due to
the PHTX transform, as well as C post-passage through the Sboxes. The sums
of G into A and E into G, although they are “ vertical”, produce horizontal
changes due to the carries, so they are kind of a mixed change. In every 4-round
cycle each word passes through 2 individual horizontal changes, three vertical
changes and is involved in two more mixed changes. This ensures that the
number of active Sboxes multiply rapidly.

As we said above, the attacker might try to leave some round keys unchanged,
at least through some rounds, and try to folllow the evolution of any small
change in the state through some probabilistic trail. However, after a few rounds
of even a 1 bit change in the state, there are more than 40 active Sboxes per
round, in fact usually there are more than 50. Since the passage of any specific
non zero difference through the Sbox to reach another specific non zero difference

23

hold with probability either zero or 2−2, it follows that after just two rounds
with just 32 active Sboxes in each of them (and, as said above, there are usually
50 after a couple of rounds if the key rounds are the same) the attacker will
face a probability of (2−2)64 = 2−128, and since anyway a birthday attack of
complexity O(2128) can always be mounted against a hash function of 256 bits,
there is no point in trying this attack. We are not even counting the probabilities
involved through passage by the sums.

So the attacker has to try to have changes in the message blocks that ensure
that there are some change in the key rounds to offset the changes in the state,
not necessarily every round, but he/she cannot afford to let too many rounds
pass without change. However, the changes in the keys should not be too
high, otherwise again the number of active Sboxes will explode beyond the 64
threshold. The key expansion, being non-linear, is difficult to analyze. However,
it seems doubtful to find any input words that would produce an expanded key
of hamming weight of less than 200. (Actually, we have never found any with
less than 400). To these one must add the other part of the expansion of the
key, plus the fact that each block is used twice, so it seems safe to say that
finding a collision should be well beyond the 2128 work factor.

Similar considerations apply to the 512 bit version:here the threshold is now
2256, but there are 128 Sboxes per round, and the expansion plus the diffusion
ensure that very quickly one gets at least 80-90 active Sboxes per round.

5.3 Algebraic Attacks

Here, the attacker tries to create a system of nonlinear (usually quadratic)
equations, that represent the internal operations of the hash, and then solve
them by means of of some algorithm, for example a Grobner base reduction or
a more specialized algorithm like the XSL algorithm. The Sboxes used in TIB3
are susceptible to this attack because they are 3 by 3 Sboxes. (The original
attack against some versions of Serpent and Rijndael made use of two things: in
the case of Rijndael, that the Sboxes were algebraic, and in the case of Serpent,
that the 4 by 4 Sboxes were small. The Sbox of TIB3 is both small and algebraic,
so they should be easy targets. This is offset by the fact that there are 64 of
them in each round for a total of 1024 for the whole cipher, plus the use of the
shifts that move the bits around, so the system of equations of a cipher similar
to TIB3 but that uses only xors and shifts would be very complicated, similar
to the system of Serpent. (Serpent has 32 rounds but only 32 Sboxes per round,
the total is again 1024 Sboxes). But in TIB3 besides xors and shifts, 32-bit
sums are also used. (although we described the cipher with both 32-bit sums
in parallel and 64-bits sums, the 64-bits sums are only on the high bits, so they
are effectively 32-bit sums). Each sum requires tens of equations of the bits to
describe. In the main portion of the cipher, there are 8 sums in each round, for
a total of 128 sums for the whole 16 rounds. Also, in the expansion of the key
there are 3 sums in each iteration, which gives a total of 72 more sums. In the
whole cipher then there are 200 sums, so there is adequate protection for the
algebraic attacks.

24

Other types of algebraic attacks, like attacks of interpolation, also require
that the degree of the polynomial that describes the function is either not very
high or sparse. The polynomial that represents the Sbox is 6x6 + 3x3 + 5x4 +
7x3 + x2 + 4x + 6 and since there are 64 of them in each round the complete
polynomial is sufficiently complicated. Plus, as before, the use of 32 bit sums
complicate the picture. In general these attacks work best for functions that
work essentially within one field or group. TIB3 is not one of those functions.

5.4 Fixed Points

In a usual construction hi = f(hi−1,mi) a fixed point is a pair (h,m) with
h = f(h,m), which allow the attacker to repeat m at will.

Because we use the bits processed and previous block, we have a recursion
that can be described as hi = fi(hi−1,mi,mi−1). Then even finding h,m,m∗

with h = fi(h,m,m∗) does not guarantee that we can keep the fixed point one
more round. First of all there is the problem that the next input would be of
the form (h, ?,m). But assume that ? can be chosen to be m∗ so as to be able
to repeat the message m∗mm∗m.... Even so, now this must be also a fixedpoint
for fi+1. So the attacker would have to find a multiple fixed point, which seems
rather improbable.

6 Performance

As can be seen below, TIB3 has excellent performance on long messages. On
messages of one block length or less, it suffers from the fact that we always
process at least two blocks, unlike other hashes in which if the length is, say,
half a block, they pad, add the length and process just that block. Instead we
pad, process the block, and then process the last block with the length.

Briefly stated, on the reference platform Core2Duo 2.4 GHz running Vista
64-bits, TIB3 hashes at about 290-300 MB/sec for the 224 and 256 versions
and at about 350 MB/sec for the 384 and 512 versions for long messages but
with a significant reduction for shorter messages, and running Vista 32 bits
the 224 and 256 versions run at about 173 MB/sec for long messages, and the
384/512 versions at about 130 Mb/sec, again with significant reduction for short
messages.

So in 64- bits either TIB3-256/224 or TIB3-512/384 have excellent perfor-
mance, with TIB3-512/384 better, while on 32 bits there is a sharp drop in the
performance,though still very good, but in this case the 256/224 versions are
better than the 512/384.

6.1 Performance on 64-bit processors

6.1.1 Performance on the reference platform

On the reference platform Core2Duo 2.4 GHz with 4GB of RAM running Vista
Ultimate 64-bit, we obtain the results shown below with the optimized version

25

for 64 bits compiled using Visual Studio.
We did a test of the number of cycles needed to hash one message of length

256, 504, 512, 513, 1016, 1024, 5120, 10240, 102400 and 1024000 bits. We ran
the test 100 times, took the minimum and a sample of 8 of the 100 results to see
variability. The tables below show in the first line the length of the message, the
second the minimum number of cycles per bit hashed, then the 8 samples, and
then the actual number of cycles for the minimum. The last line is the speed
estimate based on the 2,4GHz clock, measured in MBytes/sec. (Mega=220).

Cycle Test on 224 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

4.36 2.21 2.13 3.13 1.58 1.57 1.08 1.02 0.96 0.96

4.41 2.26 2.23 3.20 1.64 1.61 1.08 1.03 2.05 0.97

4.36 2.33 2.16 3.13 1.61 1.58 1.10 1.03 0.97 0.97

4.36 2.26 2.23 3.23 1.64 1.62 1.08 1.03 0.97 0.97

4.41 2.31 2.18 3.16 1.61 1.59 1.10 1.02 0.97 0.97

4.36 2.26 2.25 3.25 1.64 1.63 1.09 1.03 0.97 0.97

4.41 2.33 2.16 3.16 1.59 1.58 1.10 1.03 0.97 0.96

4.36 2.26 2.23 3.23 1.64 1.63 1.09 1.03 0.97 0.96

4.41 2.31 2.16 3.16 1.59 1.59 1.10 1.03 0.97 0.96

1116 1116 1092 1608 1608 1608 5532 10440 98460 979368

65.63 129.21 134.14 91.27 180.77 182.19 264.79 280.62 297.55 299.14

Cycle Test on 256 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

4.41 2.24 2.18 3.16 1.58 1.56 1.09 1.03 0.97 0.96

4.41 2.31 2.25 3.25 1.64 1.61 1.09 1.03 0.98 0.97

4.45 2.24 2.18 3.18 1.61 1.57 1.09 1.03 0.98 0.97

4.45 2.31 2.25 3.23 1.64 1.57 1.09 1.03 0.98 0.96

4.41 2.24 2.18 3.16 1.58 1.57 1.09 1.03 0.98 0.96

4.45 2.31 2.25 3.23 1.59 1.57 1.09 1.03 0.98 0.96

4.45 2.24 2.18 3.18 1.59 1.57 1.09 1.03 0.98 1.01

4.41 2.31 2.25 3.25 1.61 1.57 1.09 1.03 0.97 0.96

4.45 2.24 2.18 3.18 1.59 1.57 1.09 1.03 0.98 0.96

1128 1128 1116 1620 1608 1596 5556 10536 99552 979992

64.93 127.83 131.26 90.60 180.77 183.56 263.65 278.06 294.28 298.95

Cycle Test on 384 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

6.98 3.57 3.54 3.53 1.77 1.75 0.98 0.89 0.80 0.79

7.03 3.62 3.66 3.58 1.80 1.79 0.99 0.89 0.80 0.79

6.98 3.62 3.59 3.60 1.81 1.77 0.99 0.89 0.80 0.79

6.98 3.64 3.68 3.56 1.78 1.78 0.99 0.89 0.80 0.79

6.98 3.62 3.59 3.53 1.81 1.76 0.99 0.90 0.80 0.79

6.98 3.57 3.63 3.56 1.80 1.79 0.99 0.89 0.80 0.79

6.98 3.62 3.59 3.60 1.81 1.76 0.99 0.89 0.80 0.79

26

6.98 3.57 3.63 3.60 1.78 1.79 0.98 0.89 0.80 0.79

6.98 3.64 3.56 3.58 1.82 1.76 0.99 0.89 0.80 0.79

1788 1800 1812 1812 1800 1788 5016 9072 81552 804300

40.96 80.11 80.84 81.00 161.49 163.85 292.03 322.93 359.24 364.25

Cycle Test on 512 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

7.13 3.64 3.59 3.58 1.78 1.76 0.99 0.89 0.79 0.78

7.13 3.71 3.68 3.67 1.78 1.82 0.99 0.89 0.80 0.79

7.13 3.67 3.59 3.60 1.82 1.76 0.99 0.89 0.80 0.79

7.13 3.74 3.68 3.67 1.80 1.80 0.99 0.89 0.80 0.79

7.13 3.67 3.61 3.60 1.83 1.76 0.99 0.90 0.80 0.79

7.13 3.71 3.68 3.67 1.78 1.79 0.99 0.89 0.80 0.78

7.13 3.64 3.61 3.60 1.82 1.77 0.99 0.90 0.80 0.78

7.13 3.71 3.66 3.67 1.80 1.79 0.99 0.89 0.80 0.80

7.13 3.67 3.61 3.58 1.83 1.77 0.99 0.90 0.80 0.78

1824 1836 1836 1836 1812 1800 5052 9120 81204 800964

40.15 78.54 79.78 79.94 160.42 162.76 289.95 321.24 360.78 365.77

Other test measured the speed directly, hashing many messages of the re-
quired length and taking the actual time as measured by the clock counter. We
obtained the following results:

TIB3-224:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
62 122 127 90 179 180 255 278 284 284 MB/sec

TIB3-256:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
60 122 127 81 170 180 255 279 284 284 MB/sec

TIB3-384:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
40 78 78 78 161 161 280 307 348 347 MB/sec

TIB3-512:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
39 77 77 76 155 161 280 307 349 348 MB/sec

The call for SHA-3 requires to measure the number of cycles to set-up the
algorithm, e.g. in constructing internal tables. We do not have any such table
constructions, the only thing would be the settings of the IVs. So we measured
the cycles needed to do the “Init” procedure in the specifications, which sets up
the initial state. Because the number of cycles is very low we did 10000 tests
and saved the minimum and the median.

In the 224/256 versions the minimum is 18 cycles and the median 27 cycles.
In the 384/512 versions the minimum is 36 cycles and the median 45 cycles.

27

6.1.2 Performance On Linux 64-bits

On the reference Core2Duo 2.4 GHz with 4GB of RAM running Mandriva of 64
bits, compiling with gcc, similar tests give:

Cycle Test on 224 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

4.78 2.43 2.37 3.42 1.71 1.69 1.16 1.09 1.04 1.03

4.83 2.43 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

4.83 2.43 2.37 3.42 1.71 1.69 1.16 1.09 1.04 1.07

4.83 2.43 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

4.83 2.45 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

4.78 2.43 2.37 3.44 1.71 1.69 1.16 1.10 1.04 1.03

4.78 2.43 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

4.78 2.43 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

4.83 2.43 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

1224 1224 1212 1752 1740 1728 5940 11208 106080 1053072

59.84 117.81 120.86 83.77 167.06 169.54 246.61 261.39 276.18 278.20

Cycle Test on 256 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

4.78 2.40 2.37 3.42 1.72 1.71 1.16 1.09 1.03 1.03

4.83 2.40 2.39 3.44 1.72 1.72 1.16 1.09 1.03 1.03

4.83 2.40 2.37 3.44 1.74 1.71 1.16 1.09 1.03 1.03

4.83 2.40 2.39 3.44 1.74 1.72 1.16 1.09 1.03 1.03

4.83 2.40 2.39 3.42 1.72 1.72 1.16 1.09 1.03 1.03

4.78 2.40 2.37 3.44 1.72 1.72 1.16 1.09 1.03 1.03

4.83 2.40 2.39 3.42 1.74 1.72 1.16 1.09 1.03 1.03

4.83 2.40 2.39 3.44 1.74 1.72 1.16 1.09 1.03 1.03

4.83 2.40 2.37 3.44 1.72 1.71 1.16 1.09 1.03 1.03

1224 1212 1212 1752 1752 1752 5964 11208 105720 1053036

59.84 118.97 120.86 83.77 165.91 167.22 245.61 261.39 277.12 278.21

Cycle Test on 384 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

8.25 4.21 4.12 4.14 2.07 2.04 1.15 1.04 0.92 0.91

8.30 4.21 4.15 4.14 2.08 2.05 1.15 1.04 0.92 0.92

8.30 4.21 4.15 4.14 2.08 2.04 1.15 1.04 0.92 0.92

8.30 4.21 4.15 4.14 2.08 2.04 1.15 1.04 0.92 0.92

8.30 4.21 4.15 4.14 2.08 2.04 1.15 1.04 0.92 0.92

8.30 4.21 4.15 4.14 2.08 2.05 1.15 1.04 0.92 0.92

8.34 4.21 4.15 4.14 2.08 2.05 1.15 1.04 0.92 0.92

8.30 4.21 4.15 4.14 2.08 2.05 1.15 1.04 0.92 0.93

8.34 4.21 4.15 4.14 2.07 2.04 1.15 1.04 0.92 0.93

2112 2124 2112 2124 2100 2088 5880 10620 94392 936840

34.68 67.89 69.36 69.10 138.42 140.31 249.12 275.87 310.37 312.72

28

Cycle Test on 512 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

8.39 4.21 4.22 4.21 2.10 2.06 1.16 1.04 0.94 0.92

8.44 4.24 4.22 4.21 2.11 2.07 1.16 1.04 0.94 0.93

8.39 4.21 4.22 4.21 2.11 2.07 1.16 1.04 0.94 0.93

8.39 4.24 4.22 4.21 2.13 2.07 1.16 1.04 0.94 0.93

8.39 4.21 4.24 4.21 2.11 2.06 1.16 1.04 0.94 0.92

8.39 4.24 4.22 4.21 2.10 2.07 1.16 1.04 0.94 0.92

8.39 4.21 4.22 4.21 2.11 2.07 1.16 1.04 0.94 0.92

8.39 4.24 4.22 4.21 2.10 2.07 1.16 1.04 0.94 0.92

8.39 4.21 4.24 4.21 2.11 2.07 1.16 1.04 0.94 0.92

2148 2124 2160 2160 2136 2112 5916 10656 95844 937092

34.10 67.89 67.82 67.95 136.09 138.72 247.61 274.93 305.67 312.64

TIB3-224:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
54 108 111 78 154 160 240 252 271 271 MB/sec

TIB3-256:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
54 108 111 78 154 160 240 252 271 271 MB/sec

TIB3-384:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
33 64 65 65 129 132 240 281 305 305 MB/sec

TIB3-512:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
32 63 63 64 126 129 240 266 305 305 MB/sec

6.2 Performance on 32-bit processors

The algorithm was build in such a way to be adaptable to both 32 and 64 bit
processors. The sums are, except for some in the 384/512 versions, actually all
32-bit sums, and the shift are actually shifts of 32-bit words.

On the reference platform Core2Duo 2.4 GHz with 2GB of RAM running
Vista 32-bit, we obtain the following results with the optimized version for 32
bits compiled using Visual Studio.

As before, the first line indicate the number of bits of the message, the
second the minimum number of cycles per bit over all tests, then a sample to
show regularity, the next to last line is the actual number of cycles and the last
line is estimated speed based on the speed of the processor.

Cycle Test on 224 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

29

7.59 3.86 3.75 5.40 2.73 2.68 1.83 1.73 1.63 1.62

7.78 3.90 3.82 5.47 2.76 2.68 1.84 1.74 1.63 1.62

7.64 3.88 3.77 5.47 2.76 2.70 1.84 1.74 1.63 1.62

7.83 3.93 3.75 5.47 2.76 2.70 1.83 1.74 1.63 1.62

7.64 3.90 3.77 5.47 2.74 2.68 1.84 1.74 1.63 1.62

7.59 4.10 3.75 5.47 2.75 2.70 1.84 1.74 1.63 1.62

7.83 3.88 3.77 5.47 2.76 2.73 1.84 1.74 1.63 1.62

7.64 3.90 3.75 5.47 2.75 2.73 1.84 1.74 1.63 1.62

7.78 3.90 3.77 5.47 2.74 2.70 1.84 1.74 1.63 1.62

1944 1944 1920 2772 2772 2748 9372 17712 166620 1663524

37.68 74.17 76.29 52.95 104.86 106.61 156.30 165.41 175.83 176.11

Cycle Test on 256 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

7.78 3.83 3.80 5.45 2.73 2.68 1.83 1.72 1.63 1.62

7.83 3.93 3.82 5.47 2.75 2.72 1.84 1.73 1.63 1.62

7.83 3.93 3.82 5.47 2.83 2.84 1.84 1.73 1.63 1.62

7.83 3.83 3.82 5.47 2.75 2.71 1.84 1.73 1.63 1.62

7.83 3.90 3.82 5.47 2.75 2.71 1.84 1.73 1.63 1.62

7.83 3.90 3.82 5.47 2.75 2.70 1.84 1.73 1.63 1.62

7.83 4.14 3.82 5.47 2.74 2.71 1.84 1.73 1.63 1.62

7.83 3.93 3.82 5.47 2.75 2.77 1.84 1.73 1.63 1.66

7.83 3.93 3.82 5.47 2.75 2.71 1.84 1.73 1.63 1.62

1992 1932 1944 2796 2772 2748 9360 17640 166608 1662948

36.77 74.64 75.35 52.49 104.86 106.61 156.50 166.08 175.84 176.17

Cycle Test on 384 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

18.89 9.57 9.42 9.40 4.71 4.66 2.69 2.44 2.21 2.21

18.94 9.60 9.45 9.43 4.72 4.68 2.69 2.44 2.21 2.39

18.89 9.57 9.42 9.43 4.71 4.68 2.69 2.44 2.21 2.21

18.89 9.57 9.45 9.43 4.71 4.68 2.69 2.44 2.21 2.21

18.89 9.57 9.42 9.43 4.81 4.69 2.69 2.44 2.21 2.25

18.89 9.60 9.45 9.43 4.71 4.68 2.69 2.44 2.21 2.21

18.94 9.57 9.42 9.43 4.72 4.68 2.69 2.44 2.21 2.21

18.89 9.57 9.45 9.43 4.71 4.69 2.69 2.44 2.21 2.27

18.89 9.60 9.42 9.43 4.71 4.69 2.69 2.44 2.21 2.21

4836 4824 4824 4824 4788 4776 13752 24960 226764 2262060

15.15 29.89 30.37 30.43 60.71 61.34 106.52 117.38 129.20 129.51

Cycle Test on 512 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

19.03 9.64 9.49 9.47 4.74 4.73 2.69 2.44 2.22 2.21

30

19.03 9.64 9.52 9.50 4.84 4.73 2.70 2.44 2.22 2.21

19.08 9.64 9.52 9.66 4.75 4.75 2.70 2.44 2.22 2.21

19.08 9.64 9.52 9.47 4.76 4.75 2.70 2.44 2.22 2.21

19.08 9.64 9.52 9.47 4.75 4.73 2.70 2.44 2.22 2.21

19.08 9.64 9.52 9.50 4.76 4.73 2.71 2.44 2.22 2.21

19.08 9.64 9.52 9.50 4.76 4.73 2.69 2.44 2.22 2.21

19.08 9.64 9.52 9.50 4.75 4.73 2.70 2.44 2.22 2.21

19.03 9.64 9.52 9.50 4.75 4.73 2.70 2.44 2.22 2.21

4872 4860 4860 4860 4812 4848 13788 25008 226848 2262372

15.03 29.67 30.14 30.20 60.41 60.43 106.24 117.15 129.15 129.50

Running actual tests for speed we obtain:
TIB3-224:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
36 73 74 52 102 105 153 162 173 173 MB/sec

TIB3-256:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
36 73 74 51 102 105 153 161 173 173 MB/sec

TIB3-384:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
15 29 30 30 60 61 106 117 130 130 MB/sec

TIB3-512:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
15 30 30 29 59 60 106 118 125 130 MB/sec

The call for SHA-3 requires to measure the number of cycles to set-up the
algorithm, e.g. in constructing internal tables. We do not have any such table
constructions, the only thing would be the settings of the IVs. So we measured
the cycles needed to do the “Init” procedure in the specifications, which sets up
the initial state. Because the number of cycles is very low we did 10000 tests
and saved the minimum and the median.

In the 224/256 versions the minimum is 99 cycles and the median 108 cycles.
In the 384/512 versions the minimum is 117 cycles and the median 126 cycles.

6.2.1 32-bit restricted environment

The Optimized 32 bit version was compiled for Windows Mobile 5.0 for ARMV4i
and tested on an iPaq with processor ARM92OT S3C2442A with 53.88 MB
RAM obtaining 3.17 Mb/sec for the 256 bit version.

31

6.3 Performance on 8-bit processors

As we explained above, TIB3-256 can be easily thought in terms of 32-bit reg-
isters, so we model this operations now on 8-bit registers. Since TIB3 uses only
logical operations, sums and shifts, it should be easily implemented on 8-bit
processors.

6.3.1 Data Memory requirements

The data memory requirements are: 64 bytes for the current block, 64 bytes for
the previous block, 32 bytes for the hash, 32 bytes to hold the hash state at the
start of the encryption in order to do the Davies-Meyer update, 80 bytes for the
recursion of the expansion and 8 bytes to keep the bits processed, so a total of
280 bytes.

6.3.2 General Considerations

We consider each part of the encryption step separately.
The Expansion of the key:
Here we have the ψ function. When viewed as operating on 32-bit word, ψ

uses six 32-bit xors, three 32-bit sums and two shifts, one of 11 bits, the other
of 7.

ψ is used 24 times in the expansion, to which we have to add 8 more xors
in calculating the input to the expansion, plus 20 more xors when calculating
the inputs to the first two uses of ψ. So the whole expansion uses 72 sums, 100
xors and 48 shifts.

Rounds of Encryption
Each round of encryption has 8 xors, 4 sums, two PHTXs and a passage

through the Sboxes. Each PHTX uses 2 sums, 2 xors and 2 shifts. So we have
a total for the round of 10 xors, 8 sums and 2 shifts plus the Sbox.

As we said earlier the Sbox can be modeled bitsliced with the boolean func-
tions:

f(x, y, z) = x⊕ (y ∧ z)
g(x, y, z) = z ⊕ (x ∧ y)
h(x, y, z) = y ⊕ (x ∧ z)

That would be 3 xors, 3 ands and 4 negations plus two copies into temporary
registers. In fact it can be modeled taking temporary registers t1 and t2 as:

t1 = z

t2 = y

z = x

y = x ∨ y

32

x = x

z = z ⊕ t2
t2 = t2 ∧ t1
y = y ⊕ t1
x = x⊕ t2

so a total of 9 operations which have to be repeated on 32-bit registers, thus we
have 18 logical operations.

Thus each round has 8 sums, 28 logical operations, and 2 shifts. There are
16 rounds, so the encryption proper after the expansion of the key takes 128
sums, 448 logical operations and 32 shifts.

The total for the encryption (rounds+expansion) is 200 sums, 548 logical
operations and 80 shifts. We may be undercounting some moves between regis-
ters.

After the encryption we have 8 xors for the Davies-Meyer update, and the
update of the bits processed, which is the sum of 512 (or less) to a 64-bit register,
so this is 2 more sums.

To this we have to add the initialization, which is just the copy of 768 bits=24
32-bit registers plus the last iteration. The last iteration is like the others, but
there is an extra xor of the hash and the block, this affects only 256 bits

So, to hash a message of length t blocks we need approximately 202t+ 200
sums, 556t+ 558 logical operations and 80t+ 80 shifts.

6.3.3 Efficiency on an ideal model

If we assume a processor model with several 8-bit registers (for example four) in
which the logical and arithmetic operations (and,or, xors, sums) take one cycle
on each register, and such that the sum on 32-bit words then takes 8 cycles to
implement, shifts take 12 cycles and other logical operations take 4 cycles, then
the total number of cycles for a message of length t blocks would be 4800t+4792
cycles (on code that should be optimized for 8-bit processor)

If instead we have also 8 cycles per logical operation then the total is 7024t+
7024 cycles. (these estimates and the general model are similar to the ones the
MARS team did in their presentation. See [BCD+])

Assuming 20MHz, for long messages where we can disregard the overhead
of 4792 (7024) cycles, we are hashing about 4000 blocks (2800) of 512 bits per
second, about 2Mbit/sec. (1.4Mbit/sec), if we assume one instruction cycle=one
clock cycle like MARS did. In practice however it could be one instruction
cycle=4 clock cycles, so the speed would be in the order of 350Kbit/sec. If
instead of hashing a long message one has to hash many one-block messages,
then each such message has the overhead of the extra encryption, so the speed
is halved.

However, in many cases one does not use many 8-bit registers but only one.
In that case the cost of moving data in and out of the register is a great factor.

33

For example, the cost of doing one xor of two 8-bit quantities is at least 3
cycles: one cycle to move one of the quantities into the register, another to xor
the other, then a third cycle to move the content of the register into another
location. On the other hand if one makes several xors like a = b⊕ c⊕ d⊕ e, we
still have only two moves and three xors.

With only one register the cost of doing the same operation on a 32-bit word
grows fast, because one need to constantly move in and out of the register 8-bit
quantities. In particular a xor of two 32-bit words cannot be made in parallel.
We estimate that sums and xors will take 16 cycles, a shift of 1 five cycles, and
others correspondingly higher.

So in such a model we expect the estimate above to be much higher so we
did a simulated implementation

6.3.4 Simulated implementation

We implemented the code on a simulated 8-bit micro-controller.
We simulated MicroChip PIC18F452 running at 40 Mhz. We used:
Developing environment MPLAB IDE v8.10,
Compiled with compiler MPLAB C18
In the simulation of that micro-controller each assignment takes between 2 or

3 instruction cycles, logical operations and sums of 8-bit registers take 7 cycles
and shifts of 8-bit registers take 5 cycles, instead of the 1 cycle we assumed on
the general model.

Logical operations or the sum on 32-bit registers take both 36 cycles. (about
four times the cost of the corresponding operation on 8-bit).

Shifts are very dependent on the amount shifted. The shifts used in our
algorithm are:

<<11: 114 cycles.
<<15: 146 cycles.
>>11: 113 cycles.
>>7: 80 cycles.
(with better optimization this numbers can be wrought down onto the 40-50

range). This numbers came from the fact that we used a C code in terms of
32-bit registers to implement it. The simulator optimized area, not speed. If we
were to hand code it, then a shift by 11 can be done in about 10-20 instructions,
but the simulator did not do it that way.

Assuming an average of 120 cycles for each shift, plus the 36 cycles per logical
operation or sum, we would expect about 36888 cycles per encryption plus
several more cycles due to temporary assignments, on an optimized code. Since
the code is not optimized for speed we expected more cycles, and effectively the
simulation obtained 45468 instruction cycles per encryption. In this processor
(or at least in the simulator) each instruction cycle takes 4 clock cycles, that
is the 40Mhz speed translates into 10 million instruction cycles per second.
Effectively the time the simulator gave was 4.5468 mSecs per encryption, roughly
113Kbit/sec.

34

TIB3-384 and TIB3-512 are basically doubled versions of TIB3-256. The
only difference is that TIB3-512 uses also some 64-bit sums, so the numbers
would be somewhat larger than twice the numbers for TIB3-256.

6.4 Hardware Implementation

We made a preliminary implementation on a FPGA Xilinx Virtex4 xc4vsx35ff668-
12 t requiring 6062 slices from a total of 15360 (39%) and 11141 LUTs from
a total of 30720 (36%) with a maximum propagation path of 70.797ns (14,12
MHz).

HDL Synthesis Report

Macro Statistics

Adders/Subtractors : 176

32-bit adder : 32

64-bit adder : 144

Xors : 2744

1-bit xor2 : 416

1-bit xor3 : 1440

1-bit xor4 : 768

512-bit xor2 : 1

64-bit xor2 : 118

64-bit xor3 : 1

We thank Jorge Naguil for translating the algorithm to VHDL.

35

References

[BCD+] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi,
C. Jutla, S. Matyas, L. O’Connor, M. Peyravian, D. Safford, and
N. Zunic. Mars — a candidate cipher for AES.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box anal-
ysis of the block-cipher-based hash-function constructions from PGV.
In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in
Computer Science, pages 320–335. Springer, 2002.

[FP05] Sebastián Fontana and Daniel Penazzi. A study of 3 by 3 s-boxes
and its application on a bitsliced multiplicative cipher: Quetzalcoatl.
Actas del tercer Congreso Iberoamericano de Seguridad Informática,
(CIBSI05), Valparaiso, Chile., 2005.

[Jou04] Antoine Joux. Multicollisions in iterated hash functions. application to
cascaded constructions. In Matthew K. Franklin, editor, CRYPTO,
volume 3152 of Lecture Notes in Computer Science, pages 306–316.
Springer, 2004.

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash
functions for much less than 2n work. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of Lecture Notes in Computer Science,
pages 474–490. Springer, 2005.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In
Advances in Cryptology - EUROCRYPT’93, volume 765 of Lecture
Notes in Computer Science. Springer-Verlag, 1994.

[PGV94] Bart Preneel, Ren Govaerts, and Joos Vandewalle. Hash functions
based on block ciphers: a synthetic approach. In Advances in Cryptol-
ogy - CRYPTO 93, 13th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 22-26, 1993, Proceedings,
volume 773 of Lecture Notes in Computer Science, pages 368–378.
Springer, 1994.

36

	Introduction
	Notation

	Specification
	Overview
	The General Scheme
	The Block Cipher for the 256 bit case
	Key Expansion
	Expansion of LK xor RK
	I/O specification

	The Block Cipher for the 512 bit case
	I/O specification

	IVs

	Rationale for the design
	The 3 x 3 S-box
	Diffusion
	Key Expansion
	Round keys
	The number of Rounds
	The padding and the final iteration

	Ease of Replacement of SHA2
	Security
	Resistance of the general scheme
	Collision Resistance of the general scheme in the black-box model
	Preimage Resistance of the general scheme in the black-box model
	Resistance of the general scheme against Joux's attack
	Resistance of the general scheme against Kelsey-Schneier's attack

	Differential Attacks
	Algebraic Attacks
	Fixed Points

	Performance
	Performance on 64-bit processors
	Performance on the reference platform
	Performance On Linux 64-bits

	Performance on 32-bit processors
	32-bit restricted environment

	Performance on 8-bit processors
	Data Memory requirements
	General Considerations
	Efficiency on an ideal model
	Simulated implementation

	Hardware Implementation

