
The TIB3 Hash

Miguel Montes, Daniel Penazzi

Universidad Nacional de Córdoba, Facultad de Matemática, Astronomı́a y F́ısica,
Córdoba, Argentina, Haya de la Torre y Medina Allende,

+54-351-4334051/363,e-mail: miguel.montes@gmail.com,penazzi@mate.uncor.edu

Abstract. We describe here the family of hash functions TIB3-224,256,384,512.
We give their specifications first, then some motivations for the designs,
their resistance against attacks, and performance figures.

1 Introduction

This is divided in the following way:

1. This Section.

1.1: Notations.

2.Specifications.

2.1 Overwiew.

2.2 The General Scheme.

2.3 The Block Cipher for the 256 bit case.

2.4 The Block Cipher for the 256 bit case.

2.5 IVs

3.Rationale for the design.

3.1 The 3 × 3 Sbox.

3.2 Diffusion.

3.3 Key Expansion.

3.4 Round Keys

3.5 The number of Rounds.

3.6 The padding and the final iteration.

4. Ease of replacement of SHA2

5.Security.

5.1 Resistance of the general scheme.

.-Collision Resistance of the general scheme in the black-box model

.-Preimage Resistance of the general scheme in the black-box model

.-Resistance of the general scheme against Joux’s attack

2 Miguel Montes, Daniel Penazzi

.-Resistance of the general scheme against Kelsey-Schneier’s attack.

5.2 Differential Attacks.

5.3 Algebraic Attacks.

5.4 Fixed Points.

6.Performance.

6.1 Performance on 64-bit processors

6.2 Performance on 32-bit processors.

6.3 Performance on 8-bit processors.

6.4 Hardware Implementation.

References.

1.1 Notations

GF (q) denotes the finite field with q elements.

ZZ denotes the integers.

ZZ/(n) the integers mod n.

+ means the sum in ZZ/(n) for n = 264 or n = 232.

⊕ is the sum of GF (2) or of GF (2)n depending on the context (i.e., the xor

bit a bit).

a<<r means right shift by r bits, i.e., multiplication by 2r.

a>>r means left shift by r bits, i.e., the integer part of the division of a by

2r.

a||b is the concatenation of words a and b.

2 Specifications

Here we specify the design of the new family of hash functions TIB3-224,256,384

and 512.

2.1 Overview

The hash functions described here all are based on a generalization of the Merkle-

Damgard consruction.

We explain in more detail below, but here we give a general idea of the hash

function.

The TIB3 Hash 3

Let’s review first the current standard, SHA-256. As a high level SHA-256

can be described as an iterative hash function with the Merkle-Damgard scheme

in which the underlying compression function is based on the Davies-Meyer

scheme applied to a 256-bit block cipher constructed following an unbalanced

Feistel design, source-heavy. The cipher uses a mix of xors, sums and special non-

linear compression functions. The expansion of the key is done by means of an

LFSR-like expansion but with a mix of xors, sums and rotations. The expansion

is invertible in the sense that it uses 16 32-bit words that are expanded into

64 32-bits words in such a way that given for example the last 16 words the

recursion can be worked backwards to get again all the words.

TIB3 shares some high level characteristics with SHA256, but with added

security features so an attack on SHA256 is unlikely to extend to TIB3 . The

main security features are:

1) Besides the usual previous hash and current message block, the compres-

sion function also uses the number of bits processed and the previous message

block.

2) The last iteration is done using a different scheme than Davies-Meyer, to

prevent extension attacks.

3) The underlying block cipher is an SPN cipher instead of an unbalanced

Feistel, and it uses, besides xors and sums, non-linear bijective Sboxes.

4) The expansion of the key is done in such a way that a backward recursion

is unlikely to succeed.

We will go now into the details.

2.2 The General Scheme

As outlined above, TIB3 uses a block cipher, which we describe in the next

section. Here we described how it is used.

The block cipher is a block cipher that can be salted, i.e., we have a family

of functions {Es : {0, 1}k × {0, 1}n 7→ {0, 1}n : (K,P) 7→ Es
K(P)}s∈S , where

for each s ∈ S, Es
K(P) encrypts P with the key K. (the idea is that s does

not change the security, and it can be under the control of an adversary. In our

scheme s is used to change slightly the expansion of the key into the round keys).

We use S = {0, 1}L, and assume that k is even and call r = k
2 .

4 Miguel Montes, Daniel Penazzi

Let M be a message of bitlength ℓ. Set t = ⌈ ℓ
r
⌉.(here ⌈x⌉ is the least integer

greater than or equal to x). Divide the first (t − 1)r bits of M into blocks

m1, ...,mt−1, each of length r. (if t = 1, then there is nothing here). If ℓ is a

multiple of r (i.e. t = ℓ
r

exactly), then let mt be the last r bits of M . Otherwise,

construct mt by taking the last ℓ− r(t− 1) bits of M , append a 1, and then 0s

as needed to complete r bits. Finally, construct a last block mt+1 that consists

of ℓ mod 2L in the first L bits,followed by r − L zeroes.

Define:

ℓi =

{
i.r mod L i = 1, ..., t− 1
ℓ mod L i = t
0 i = t+ 1

Let ĥ =

r−n
︷︸︸︷

0...0 ||h be the extension of an element of {0, 1}n to an element of

{0, 1}r by appending zeroes to the left.

Let h0 ∈ {0, 1}n and and m0 ∈ {0, 1}r be IVs and define for i ≥ 1:

hi =

{
Eℓi

mi||mi−1
(hi−1) ⊕ hi−1 if i ≤ t

Eℓi

mi⊕ĥi−1||mi−1

(hi−1) ⊕ hi−1 if i = t+ 1

Then H(M) is defined to be ht+1 (in the cases of length 256 and 512) or the

truncation to the leftmost 224 (resp. 384) digits of ht+1 in the case of length

224. (resp 384).

In all our cases, L = 64, and in the case of TIB3-256 (and TIB3-224),

k = 1024 and n = 256. In the case of TIB3-521 (and TIB3-384), k = 2048 and

n = 512.

The 224 bit version is the 256 version with different IVs and truncated, but

the block cipher used is the same. The 384 version is the 512 version with different

IVs and truncated, but the block cipher is the same. The block cipher for the

512 version is based on the 256 version. So we will start by explaining the 256

version.

2.3 The Block Cipher for the 256 bit case

Now we are going to describe a block cipher with encryption block of 256 bits,

and key size 1024 bits with salt of 64 bits. We want to emphazise that the block

cipher was designed taking into account that it was going to be used as a building

block within a hash function and not as a block cipher per se. In particular, we

The TIB3 Hash 5

are not claiming 1024-bit security, and because of the way we are going to use it,

the key expansion treats some bits of the key in a different manner than others,

which for a general purpose block cipher it would be a bad idea.

The cipher has 16 rounds, and all the rounds are equal. The round is a

substitution permutation network: xor a round key, pass bits through Sboxes,

spread the local changes by means of a series of xors, shifts and 32-bit sums.

The structure of the round is not symetrical: if we think of the 256 bits as four

64-bit words, then not every word is treated in the same manner. A permutation

of the words at the end of the rounds ensures that at the end of each block of

4 rounds all words have been trated similarly. Let’s denote the four sixty-words

as A,C,E and G.

At the beginning of the round C is xored to G. (this in fact was thought

originally to be part of the diffusion of the previous round, but for efficiency

reasons is put here.)

A,C,E and G are xored with some round keys,and then the bits of A,C and

E are passed through sixty-four 3-by-3 Sboxes.

The passage through the Sboxes is done in a bitslice way, like Serpent does

with their 4 by 4 Sboxes. Namely, bits 0 of A,C and E go through one Sbox,

bits 1 of A,C and E go through another Sbox, etc. The Sboxes are all the same:

if we represent 000 as 0, 001 as 1, 010 as 2, etc, then it is the Sbox 64170352.

i.e., 0 goes to 6, 1 goes to 4, 2 to 1, etc. We denote this as Sbox(A,C,E).

Meanwhile, G is subjected to a transformation PHTX(G) that mixes its bits.

The transformation is a mix of xors, 32-bit sums and shifts. Given a 64 bit word

D, viewed as an integer in {0, 1, ..., 264 − 1}, we denote D<<a the left shift by

a, i.e., the multiplication modulo 264 of D by 2a, and D>>a is the right shift

by a, i.e., the integer part of the division of D by 2a. + denotes the sum modulo

264 and ⊕ the xor bit a bit.

Given a 64 bit word D, we define D∗ = PHTX(D) to be the function:

D̃ = D + (D<<32) + (D<<47)

D∗ = D̃ ⊕ (D̃>>32)⊕ (D̃>>43)

6 Miguel Montes, Daniel Penazzi

We call this function a “PHTX” function, because of its similarity with the

usual PHT function of two words (L,H) 7→ (L + 2H,L + H), except that we

have not only + but also some shifts and xors.

After A,C, and E have gone through the Sboxes and G through the PHTX

function, we spread the changes across some of the words: we pass the new C

through the PHTX function, and then add G to A and E to G. The addition

used here is not the addition of ZZ/(264), but rather the addition of the group

(ZZ/(232))2, i.e., two parallel 32-bit additions. After this, we shift the words to

the left for the next round: (A,C,E,G) = (C,E,G,A).

If we denote the addition of (ZZ/(232))2 as +̃, then the entire round is: (de-

noting assignment by :=)

G := G⊕ C

(A,C,E,G) := (A,C,E,G) ⊕ roundkeys

(A,C,E) := Sbox(A,C,E)

G := PHTX(G)

C := PHTX(C)

A := A+̃G

G := E+̃G

(A,C,E,G) := (C,E,G,A)

Key Expansion Because of the way the cipher is going to be used, we think of

the key as consisting of a left part and a right part: K = (LK,RK), each of 512

bits. (recall that the current block will be put into LK and the previous block

into RK)

LK ⊕ RK is expanded to 2048 bits under the control of RK, in a way

described below. Also, LK and RK by themselves are used as part of the round

keys.

If we denote the expansion of LK⊕RK under the control ofRK as sixty-four-

bits words D0, ..., D31, and denote LK as the sixty-four-bit words LK0, ..., LK7

and similarly with RK, then the 64 round keys are:

The TIB3 Hash 7

Round 1 Keys: D0, LK0, D1, LK0 Round 2 Keys: D2, LK1, D3, LK1

Round 3 Keys: D4, LK2, D5, LK2 Round 4 Keys: D6, LK3, D7, LK3

Round 5 Keys: D8, LK4, D9, LK4 Round 6 Keys: D10, LK5, D11, LK5

Round 7 Keys: D12, LK6, D13, LK6 Round 8 Keys: D14, LK7, D15, LK7

Round 9 Keys: RK0, D16, RK1, D16 Round 10 Keys: RK2, D17, RK3, D17

Round 11 Keys: RK4, D18, RK5, D18 Round 12 Keys: RK6, D19, RK7, D19

Round 13 Keys: D20, D21, D22, D21 Round 14 Keys: D23, D24, D25, D24

Round 15 Keys: D26, D27, D28, D27 Round 16 Keys: D29, D30, D31, D30

Expansion of LK ⊕ RK Expansion of LK ⊕ RK is done by means of a

modified LFSR: Consider the following function ψ that takes as inputs four 64-

bit words W,X, Y, Z and outputs one 64 bit word V = ψ(W,X, Y, Z) by means

of the following transformations:

V := (Y + (Z<<32))⊕W ⊕X ⊕ (Z>>32)

V := V + (V <<32) + (V <<43)

V := V ⊕ (V >>39)

If LK ⊕RK is loaded into D0, ..., D7, we define D8 and D9 to be:

D8 = ψ(D3 ⊕RK0, D4 ⊕RK1, D5 ⊕RK2, D1 ⊕RK3)

D9 = ψ(D2 ⊕RK4 ⊕ const,D7 ⊕RK5 ⊕ salt,D6 ⊕RK7, D0 ⊕RK6)

where salt is the salt value and const is the constant 0x428a2f98d728ae22 (the

first round constant of SHA512). Once obtained these ten 64-bit wordsD0, D1, ..., D9,

we do a recursion for i ≥ 10 by means of Di = ψ(Di−10, Di−8, Di−3, Di−2) (the

polynomial x10 + x8 + x3 + x2 + 1 is primitive).

I/O specification Each block of 512 bits=64 bytes is read as follows: given the

block b0||b1||....||b63, then b0 + b12
8 + b2(2

8)2 + ...+ b7(2
8)7 is loaded into the first

64-bit word, b8 + b92
8 + ...+ b15(2

8)7 is loaded into the second 64-bit word, etc.

The final hash is the content of the registers A,C,E,G at the end of all the

iterations. This is extracted as the following bytes: A&0xFF , (A>>8)&0xFF ,

(A>>16)&0xFF , etc,

8 Miguel Montes, Daniel Penazzi

2.4 The Block Cipher for the 512 bit case

The block cipher in this case is essentially the same as the one for the 256 bit case

except that all the 64-bits words of the 256 bit case are now 128-bit words. The

32-bit sums are now all 64-bit sums, and there are some other small differences

in the shift amounts and in the difussion, because due to the larger size of the

block, more effort is needed in order to ensure a good mix. Also, because 128-

bit registers are not common, we prefer to explain the cipher in terms of 64-bit

words. Basically it is the transformation to 64-bit words of the implementation

of the 256 case in 32-bit words.

As before there are 16 rounds.

We write the state now as eight 64-bit words A,B,C,D,E, F,G,H. Each

round is now: (+ is the 64-bit sum in all cases)

G := G⊕ C

H := H ⊕D

(A,B,C,D,E, F,G,H) := (A,B,C,D,E, F,G,H) ⊕ roundkeys

(A,C,E) := Sbox(A,C,E)

(B,D, F) := Sbox(B,D, F)

(G,H) := PHTXD(G,H)

(C,D) := PHTXD(C,D)

A := A+G

B := B +H

G := E +G

H := F +H

(A,B,C,D,E, F,G,H) := (C,D,E, F,G,H,A,B)

where PHTXD is a ”double” version of PHTX:

PHTXD(L,H) :

H := H ⊕ L

H := PHTX(H)

The TIB3 Hash 9

L := L⊕H

L := PHTX(L)

(here PHTX is the same function defined in the 256 case).

The expansion is again based on a function ϕ which is basically the ψ function

of the 256 case, but with 128-bit arguments instead of 64-bit arguments. There

are some differences in the shift amounts needed because of the larger size.

However, since we have not implemented the code in 128-bit machines, and in

order to have an easier ”map” into the reference implementation (of 64 bits), we

list the function with eight 64-bit arguments instead of four 128-bit arguments

and producing two 64-bit outputs instead of one 128-bit output:

(V, V ∗) = ϕ(W,W ∗, X,X∗, Y, Y ∗, Z, Z∗) :

V := W ⊕X ⊕ Y ⊕ Z∗

V ∗ := ((Y ∗ + Z) ⊕W ∗ ⊕X∗) + V + (V <<23)

V := V ⊕ (V ∗>>15)

As in the 256 case, we xor the leftmost 512 bits of the key (written LK0, .., LK15)

with the rightmost 512 bits of the key (written RK0, ..., RK15) and put this into

(in this case) sixteen 64-bit words W0, ...,W15.

We compute W16, ...,W19 by:

(W16,W17) := ϕ(♦0,♦1,♦2,♦3)

(W18,W19) := ϕ(♠0,♠1,♠2,♠3)

where:

♦0 = (W6 ⊕ LK0,W7 ⊕ LK1)

♦1 = (W8 ⊕ LK2,W9 ⊕ LK3)

♦2 = (W10 ⊕ LK4,W11 ⊕ LK5)

10 Miguel Montes, Daniel Penazzi

♦3 = (W2 ⊕ LK6,W3 ⊕ LK7)

♠0 = (W4 ⊕ LK8 ⊕ const,W5 ⊕ LK9)

♠1 = (W14 ⊕ LK10 ⊕ salt,W15 ⊕ LK11)

♠2 = (W12 ⊕ LK14,W13 ⊕ LK15)

♠3 = (W0 ⊕ LK12,W1 ⊕ LK13)

where const is again 0x428a2f98d728ae22.

Then we compute Wi, i = 20, ..., 63 by:

(Wi,Wi+1) = ϕ(Wi−20,Wi−19,Wi−16,Wi−15,Wi−6,Wi−5,Wi−4,Wi−3)

The round keys are:

Round 1 Keys: W0,W1, LK0, LK1,W2,W3, LK0, LK1

Round 2 Keys: W4,W5, LK2, LK3,W6,W7, LK2, LK3

Round 3 Keys: W8,W9, LK4, LK5,W10,W11, LK4, LK5

Round 4 Keys: W12,W13, LK6, LK7,W14,W15, LK6, LK7

Round 5 Keys: W16,W17, LK8, LK9,W18,W19, LK8, LK9

Round 6 Keys: W20,W21, LK10, LK11,W22,W23, LK10, LK11

Round 7 Keys: W24,W25, LK12, LK13,W26,W27, LK12, LK13

Round 8 Keys: W28,W29, LK14, LK15,W30,W31, LK14, LK15

Round 9 Keys: RK0, RK1,W32,W33, RK2, RK3,W32,W33

Round 10 Keys: RK4, RK5,W34,W35, RK6, RK7,W34,W35

Round 11 Keys: RK8, RK9,W36,W37, RK10, RK11,W36,W37

Round 12 Keys: RK12, RK13,W38,W39, RK14, RK15,W38,W39

Round 13 Keys: D40, D41, D42, D43, D44, D45, D42, D43

Round 14 Keys: D46, D47, D48, D49, D50, D51, D48, D49

Round 15 Keys: D52, D53, D54, D55, D56, D57, D54, D55

Round 16 Keys: D58, D59, D60, D61, D62, D63, D60, D61

I/O specification They are the same as in the 256 case, save that the block is

1024 bits long.

The TIB3 Hash 11

2.5 IVs

For each length we need two IVs: one for h0, the other for m0 (the first “previous

block”). Our IVs are based on the IVs for SHA512. Basically the initial hash

h0 for TIB3-512 takes the same words used in the IV for SHA-512. (i.e., eight

words), while the h0 for TIB3-384 are those same words but putting the last four

words first and viceversa. m0 for TIB3-512 is the h0 for TIB3 − 384 repeated,

and m0 for TIB3-384 is the h0 for TIB3-512 repeated. h0 for TIB3-256 is the

first four words of the h0 of TIB3-512, while the h0 of TIB3-224 is the last four

words of the h0 of TIB3-512. (equivalently, the first four words of TIB3-384).

m0 for TIB3-256 is the h0 for TIB3-224 repeated and viceversa.

Explicitly: (all words are to be read left to right, then top to bottom)

TIB3-256:

h0 consists of the following four 64-bit words:

0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1

m0 consists of the following eight 64-bit words:

0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179
0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179

TIB3-224:

h0 consists of the following four 64-bit words:

0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179

m0 consists of the following eight 64-bit words:

0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1
0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1

TIB3-384:

h0 consists of the following eight 64-bit words:

12 Miguel Montes, Daniel Penazzi

0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179
0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1

m0 consists of the following sixteen 64-bit words:

0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1
0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179
0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1
0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179

TIB3-512:

h0 consists of the following eight 64-bit words:

0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1
0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179

m0 consists of the following sixteen 64-bit words:

0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179
0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1
0x510e527fade682d1 0x9b05688c2b3e6c1f
0x1f83d9abfb41bd6b 0x5be0cd19137e2179
0x6a09e667f3bcc908 0xbb67ae8584caa73b
0x3c6ef372fe94f82b 0xa54ff53a5f1d36f1

3 Rationale for the design

We consider three possibilities for the top structure of a hash function:

1) A traditional structure that use a block cipher in one of the secure schemes

of [PGV93] as compression function, with a Derkle-Damgard strenghtening.

2) Use the same Derkle-Damgard iteration, but with a stream cipher instead

of a block cipher as underlying compression function.

3) Use a different approach altogether. (for example, a belt and mill structure

like Panama or Radio-Gatun).

The TIB3 Hash 13

We felt that approach 3), trying a new kind of structure, was too risky for

the SHA-3 competition, although in the particular case of the belt and mill

structure, it already has some years of exposure, so to use that structure would

not have been that risky. However, we did not “felt at home” with that structure.

The structure 2) has many good advantages, but altogether, we felt that

keeping a traditional approach was the right choice. However, we added to the

usual design two security features: one: re-use of the previous input block in the

iterative step. Two, use the number of bits processed in the input function.

Of the 12 secure schemes of [PGV93], only four resist all attacks. However,

they are all of the form hi = Ehi−1
(∗) ⊕ (⋆), where ∗ and ⋆ can each be either

mi or mi ⊕ hi−1. However, we wanted to read our message blocks in chunks of

512 bits, and any of these schemes would force us to construct a 512-bit cipher

for a hash function of length 256, which we felt was a misuse of resources. So,

we settled on the popular Davies-Meyer scheme hi = Emi
(hi−1)⊕ hi−1, used on

all the members of the MDx family, including SHA256 and friends. The Davies-

Meyer scheme is one of the 12 secure schemes of PGV, with the only problem of

vulnerability to a fixed point attack. This is not a problem in the MDx family

due to the Merkle-Damgard strenghtening at the end of the message, but just in

case we dedided to add the processed bits as a salt into the block cipher, which

makes then even this possible problem vanish.

We decided also to use the previous block in the recursion. In the Davies-

Meyer scheme, the attacker has control of the key. In a colission attack, the

attacker will try to get a collision by choosing appropriate message blocks. How-

ever, if each message block is used in two iterations, the attacker will have to

get a collision for the last time the block is used. This mean two things: first,

in the last block for which the attacker tries to get a collision, half the values

of the key cannot be used in the attack (because they are going to be reused in

the next iteration). Second, the values that are used in the attack have already

been used in the previous iteration, which means that the attacker has to set up

a system of equations for the current iteration and the previous one also. This

in fact forces the attacker to work through 32 rounds of the cipher, instead of

just 16.

14 Miguel Montes, Daniel Penazzi

3.1 The 3 × 3 S-box

We wanted in the design to have Sboxes, and not rely only on the nonlinearity

provided by a combination of xors and sums. Large Sboxes are very good, but

they require the use of huge tables. We wanted the hash to be easily imple-

mented in low resources environments, so we wanted to use only sums,shifts and

a combination of logical operators like xor, or, and, etc.

This naturally pointed the way for small Sboxes that could be implemented

in a bitsliced way by means of their component boolean functions. The natural

one would be a 4 by 4 Sbox, like Serpent, but the boolean logic of any good 4by4

Sbox is extensive. 3 by3 Sboxes have very short boolean logics.

We asked our S-box to be invertible, to minimize the greatest non trivial

value in the XOR difference table (resistance against differential cryptanalysis),

to minimize the highest non trivial correlation among linear combinations of

input and output bits. (resistance against linear cryptanalysis), to have no fixed

points or opposite fixed points (x 7→ x), and to minimize the number of times

that a difference of one bit in the input translates into a diference of one bit at the

output. These were studied in [FP05], and it turns out they are all “algebraic”,

i.e., they all result form the construcion of [N94] of taking the inverse function

over GF (23):

x 7→

{

x−1 if x 6= 0
0 if x = 0

and then precompose and/or post-compose with an affine transformation. We

chose the Sbox used in [FP05], which is one of the ones obtained by further asking

that all possible representations as S(x) = (QM .(PMx+ Pb)
−1 +Qb) (and with

any of the two ways of representing GF (8) as GF (2)[x]/p(x)) either have QM

or PM different from the identity matrix, and such that if XM = I then Xb 6= 0;

that it should sent 0 to either 3,5 or 6 (numbers with hamming weight two)

and that its cycle representation has length 8. Representing 0 = 000, 1 = 001,

2 = 010, etc, then the Sbox is (0, 1, 2, 3, 4, 5, 6, 7) 7→ (6, 4, 1, 7, 0, 3, 5, 2) with cycle

representation (06537214). Its weakest representation as a composition of affine

functions and the inverse map is S(x) = A(x+ 1)−1 + 4 with

A =

0 1 0
0 0 1
1 0 0

The TIB3 Hash 15

and whenGF (8) is viewed asGF (2)[x]/(x3+x+1) As a polynomial overGF (8) it

is 6x6+3x3+5x4+7x3+x2+4x+6 when GF (8) is viewed asGF (2)[x]/(x3+x+1)

and 7x6 + 4x4 + x2 + 6 when GF (8) is viewed as GF (2)[x]/(x3 + x2 + 1)

Since we are going to implement it in bitsliced mode, its component boolean

functions are relevant: they are:

f(x, y, z) = x⊕ (y ∧ z)

g(x, y, z) = z ⊕ (x ∧ y)

h(x, y, z) = y ⊕ (x ∧ z)

The difference table given by:

(∆x,∆y) → (#{x ∈ {0, 1}3 : S(x) ⊕ S(x⊕∆x) = ∆y})

is:
1 2 3 4 5 6 7

1 0 2 2 0 0 2 2
2 2 0 2 0 2 0 2
3 2 2 0 0 2 2 0
4 0 0 0 2 2 2 2
5 0 2 2 2 2 0 0
6 2 0 2 2 0 2 0
7 2 2 0 2 0 0 2

If a · b is the parity (0 or 1) of the bitwise product of a and b, then the linear

table

(Γx, Γy) → (#{x ∈ {0, 1}3 : x · Γx = S(x) · Γy} − 4)

is:
1 2 3 4 5 6 7

1 0 2 -2 0 0 2 2
2 2 0 2 0 -2 0 2
3 2 -2 0 0 2 2 0
4 0 0 0 -2 -2 2 -2
5 0 -2 -2 2 -2 0 0
6 2 0 -2 -2 0 -2 0
7 -2 -2 0 -2 0 0 2

3.2 Diffusion

We wanted a diffusion that would involve operations outside of GF (8), to pre-

vent algebraic attacks. A very good idea would be to use some combinations of

16 Miguel Montes, Daniel Penazzi

multiplications and perhaps variable rotations. However, these operations, al-

though reasonably fast in the target Core2Duo machine, became unreasonable

in constrained environments. So we wanted the diffusion to consists only on a

combination of sums, xors and shifts. Sums were necessary to add extra nonlin-

earity to the small 3by3 Sboxes and to prevent algebraic attacks. We excluded

rotations because we wanted the code to work well on both 32 bit and 64 bits

machines, and rotations of 64 bit words are slow in 32 bits machines and vicev-

ersa. However, shifts of at least 32 bits work well on both machines, although it is

true that the diffusion could have been better using other shifts (and rotations).

The diffusion we settled on is simple enough but quickly produce a number of

active Sboxes if small differences are not deal with inmediately.

3.3 Key Expansion

The key expansion was a balance act between security and speed. The more

bits we used that come from a complex expansion, the better security, but the

worst the speed. So we settled on expanding part of the key, and using other

parts just by repeating them. For the expansion itself we used originally a linear

code, because in that case the minimum nonzero distance equals the minimum

weight. This is an advantage to both the attacker and the designer, but to the

designer is an advantage only if he can prove lower bounds. For the codes we

tried either we could not prove lower bounds or they were too slow. We decided

to use a nonlinear code. The minimum nonzero hamming distance of a linear

code is not the minimum weight and makes the attacker job more difficult. (in

a linear expansion, the attacker can try vectors that have some small Hamming

weight and satisfy some conditions, then simply add it to an existing message

to find another message that collides. In a nonlinear expansion, he or she has

to work with pairs of messages from the start). Again, we had to balance speed

and security. The one we settled on passed some test we threw at it that showed

that apparently any small difference at the start will grow to a big difference by

the end, which is the critical portion of a a differential attack, since a collision

has to be produced there. The attacker then might try to find a small weight

at the end, and simply run the recursion backward. But here we added the

extra security feature of having a recursion of length 10, but only provide 8

inputs. That is, in order to work the recursion backward, the attacker has to fix

The TIB3 Hash 17

a target D23, ..., D31 that s/he wants to obtain. Working backwards, he or she

can find suitables D0, .., D9 that will produce the targets. However, these are

not necesarily acceptable, since s/he can only control D0, ..., D7, while D8 and

D9 depend on them. So, after working the recursion backward, the attacker has

to verify that the results are compatible verifying the equations that produce

D8 and D9 from D0, ..., D7. This will happen only with probability 2−128 if the

targets are random. So actually the attacker will have to develop a method to

work this out.

Moreover, this feature of widening the window of recursion allow us to intro-

duce constants in the recursion, that prevent slide attacks.

3.4 Round keys

The order of the round keys was chosen again with regard to implementation

considerations: to increase speed, as we said above, we reuse parts of the key

instead of expanding. But we wanted to reuse them in the same round, so as

to not reload them. Since there is a difference in the treatment of A,C,E with

that of G, we felt it was safe to use the same key once on one of A,C,E, and a

second time on G.

If we were designing a cipher solely as a cipher, the treatment of LK and

RK should have been more symmetric. However, because of the way the cipher

is going to be used, we actually wanted them to be assymetric, so that the way

a message block is used the first time is different from the way it is used the

second time.

3.5 The number of Rounds

Although after 4 rounds every part of the state has been treated similarly, so

in theory we could take for example an odd number of rounds, it seems better

to have a multiple of 4 rounds, so that after the whole rounds every part of

the cipher is treated As explained below, if the attacker lets a small difference

propagate, very soon a critical mass of active Sboxes makes the attack pass

the 2128 work factor. Once the number of active Sboxes became critical, two or

three roundas are enough. However, the attacker will obviously try to control

the differences. Since the attacker has control of the key, there can be 1024 bits

with very low weight. The expansion of the key will multiply this low weight

18 Miguel Montes, Daniel Penazzi

into heavier weights, but it needs “time” to do so. In order to properly give the

expansion the needed time, and taking into account that we also wanted more

use of both the current and previous block we felt that 16 rounds allow the

expansion of the key to do its job, and give an adequate margin of security given

that the attacker has control of the key. For comparison, the 256 bit version of

Rijndael (also an SPN cipher) has 14 rounds. Since the first multiple of 4 greater

than 14 is 16 this gave us another reason for this number. However, taking into

account that each block is used through 32 rounds the safety margin is higher.

A weakened version of the algorithm would be a version with less numbers of

rounds. However, for a proper assesment of a weakened version that takes into

account the expansion, the rounds that are eliminated should be the first ones,

e.g a 12-round weakened version of the algorithm should have the expansion as

it is, and simply eliminate rounds 1-4. (then D0, ..D7 for example would not be

used directly in the key rounds).

On the other hand the algorithm can be readily strengthened if the need

arise. A strenghtened version of the algorithm would include 4 more rounds (or

a multiple of 4), and the round keys for those rounds would came from simply

continuing the expansion of D into D32, ..., etc.

We think that the 20-round version of the algorithm would be much stronger

with respect to the 16 round algorithm than the strength of the 16 round version

versus the 12 round version. The slow in speed due to four more rounds plus 12

more rounds of expansion however could be too much, and overall we felt that

the 16 round version is strong enough.

3.6 The padding and the final iteration

A problem with the design that we chose is that since we want each message

block to be processed twice we need to necessarily add an extra block, regardless

of the lenght of the message. We do the usual padding of appending a 1 followed

by 0s as needed, with one exception: if the length of the message is exactly a

multiple of 512, we do not pad. We could do that, but in that case the 1 would go

necesarily in the next block, which anyway will have a codification of the length

of the message. Thus, adding or not an extra 1 merely changes the codification

of the length, so it is not needed.

The TIB3 Hash 19

As for the last iteration, we change the way it is processed to avoid any kind

of lenght extension attack: if we were not to do that, an attacker that knows

the final hash (but not the whole message) and the length of the message would

know the “previous block”, and can append any new blocks as needed, since in

that case the original final hash will be an intermediate hash. The attacker can

claim that since he knows the new final hash he knows the message. This can be

of relevance in some applications. But since we change the way the last iteration

is done with respect to the previous ones, the final hash is not an intermediate

hash, and this attack cannot be mounted.

4 Ease of Replacement of SHA2

Despite the internal differences, TIB3 as a black box behaves exactly like SHA2.

By this we mean that it also has an iterated block structure, the size of the

blocks (versions 224/256 and 384/512) are the same for the SHA2 family and

the size of the partial hashes is also the same. This means that if there is a need

for a replacement of the SHA2 family TIB3 should be able to do it straight-

forwardly. (the only basic difference in a concrete application is that TIB3 uses

more internal memory to hold the previous block and the heavier expansion, but

externally it still reads one block at a time).

In particular, from the point of view of applications, any general construction

that uses the SHA2 family in a general way (e.g, digital signatures, key deriva-

tion, pseudorandom bit generators, etc) can also use the TIB3 family in exactly

the same way. In particular, the HMAC construction is applicable to TIB3 in

the same way as with SHA2.

It may have other specific constructions that take advantage that there is a

“previous block” IV that can be used as part of a secret for example, but we have

not investigated its suitability and are not making any claims at the moment.

5 Security

5.1 Resistance of the general scheme

Collision Resistance of the general scheme in the black-box model We

could divide the proof in two parts: one showing the resistance of the general

scheme given a compression resistant compression function of the type we use,

20 Miguel Montes, Daniel Penazzi

doing an analogous to the Merkle-Damgard theorem, and a second part proving

the resistance of the compression function we use, given a general block cipher

with the charactheristics we need, doing an analogous of the security proof of

the Davies-Meyer scheme.

If one looks at the original proofs of the Merkle-Damgard and Davies-Meyer

schemes one sees that the differences in the salt and the previous block do not

afffect them negatively, so they hold for our scheme.

In the interest of completeness however (and to explicitly show that our

statement above is true), we include here an integrated proof of the security of

the whole scheme, under the assumption of a random block cipher. (we repeat

that this is basically the same classical proofs).

That is, we have a collection {Es}s of random block ciphers Es : {0, 1}k ×

{0, 1}n 7→ {0, 1}n. We denote by Ds their inverses. (i.e., for each K ∈ {0, 1}k,

P 7→ Es
K(P) is a permutation (selected randomnly from all permutations) of

{0, 1}n and Ds
K is its inverse.

An adversaryA is given access to oracles Es and Ds for each s, and we bound

its probability of success in terms of the number of queries made to the oracles.

The random block cipher can be modeled in the following way: for each s

and each k, initially Es
k is undefined, with domain and range empty. Whenever

a query to encrypt an element x by Es
k is made, the oracle checks to see if x is

in the domain of Es
k. It it is, it returns the element of the range associated to

x. Otherwise, it returns a random element y of the complement of the range,

and add x to the domain, y to the range and associates x with y. Whenever a

query to desencrypt an element y with Ds
k is made, the oracle checks if it is in

the range, in that case it returns the x associated, otherwise it returns a random

element x of the complement of the domain, adds x to the domain and y to the

range and associate x with y. (this can be simplified if one assumes that the

adversary never does pointless queries, i.e., if the adversary has already queried

the oracle for the encrytion of x (and getting y as an answer), the adversary will

not query again for x, nor will it query for the decryption of y. (and similarly if

the first query was actually for the decryption of y). From now on we make this

assumption.

Recall that our scheme makes a hash function HE out of a block cipher

E in the manner that we described earlier. Adv(q) will denote the maximum

The TIB3 Hash 21

possible advantage an adversary has in finding collisions if he or she does at most

q queries i.e., the maximum (over all adversaries that make at most q queries to

an oracle that selects E at random) of the probability that such an adversary

will find M 6= M∗ with HE(M) = HE(M∗).

Theorem: Adv(q) ≤ q(q−1)
2n

Proof: The proof is basically the same as the one on [BRS02], adapted to our

case.

By hypothesis A does (at most) q queries. If q > 2n−1, then Adv(q) ≤ 1 <
q(q+1)

2n so there is nothing to prove. So we may assume q ≤ 2n−1.

Let Qi denote (si, ki, xi, yi) if the ith query is a query to Esi to encrypt xi

under the key ki, and the oracle returns yi, or if the ith query is a query to Dsi

to desencrypt yi under the key ki and the oracle returns xi.

If A is succesfull it will produce messagesM 6= M∗ with HE(M) 6= HE(M∗).

Consider two cases:

Case 1: The messages M and M∗ have different length.

In this case, since the the last block contains the length we have that mt+1 6=

m∗
t∗+1.

The last iteration always use the block cipher E0. The key that is used is

the xor of the last block with the zero extension of the previous hash. The

length of the message is put in the last block in a place where the xor with the

previous hash does not affect it, so the keys will remain different.Since HE(M) =

HE(M∗), we must have then that:

E0
mt+1⊕ĥt||mt

(ht) ⊕ ht = E0
m∗

t∗+1
⊕ĥ∗

t∗
||m∗

t∗

(h∗t∗) ⊕ h∗t∗

Now, at some moment A must have queried the oracle in order to get the

left hand of that equation. Let Qi be that query, i.e., si = 0,ki = mt+1 ⊕ ĥt||mt,

xi = ht and yi = E0
ki

(xi).

Similarly at some other moment j A must have queried to get the right hand

side. (they must be different since ki 6= kj). Without loss of generality we can

assume that j < i. So, on the ith query both si = 0 and Qj are already fixed.

When making the query, A can do one of the following:

a) Give the oracle xi = ht and the key ki = mt+1 ⊕ ĥt||mt. The oracle will

randomly return yi from the complement of the range. For the collision to hold

22 Miguel Montes, Daniel Penazzi

this random value must satisfy yi = xi ⊕ yj ⊕ xj . Note that if xi ⊕ yj ⊕ xj is

already in the range so far defined, this cannot happen, but A can make sure

that xi ⊕ yj ⊕ xj is not in the range by carefully selecting xi. The oracle selects

yi at random from a set of size at least 2n − (i − 1), so the probability that

yi = xi ⊕ yj ⊕ xj for a fixed j < i is at most 1
2n−(i−1) <

1
2n−q

≤ 1
2n−2n−1 =

1
2n−1 . However, any j < i for which sj = 0 will be a ”good” j, so in the worst

case we have to sum this over all j < i, and we get a probability bounded

by 1
2n−1

∑

j<i j ≤ 1
2n−1

∑

j<q j = q(q−1)
2n b) Give the oracle yi and key ki =

mt+1 ⊕ ẑi,j ||mt, where zi,j = yi ⊕ yj ⊕ xj . The oracle will randomly return

xi from the complement of the domain. For the collision to hold this xi must

satisfy xi = yi ⊕ yj ⊕ xj , which again happens with probability bounded by
1

2n−(i−1) <
1

2n−1 for each fixed j and q(q−1)
2n overall.

Case 2: M and M∗ have the same length. In this case t = t∗ and we

have the following subcases: Subcase 2a: ht 6= h∗t Since there is a collision, we

must have then as in the previous case that

E0
mt+1⊕ĥt||mt

(ht) ⊕ ht = E0
m∗

t∗+1
⊕ĥ∗

t∗
||m∗

t∗

(h∗t∗) ⊕ h∗t∗

Since ht 6= h∗t , the queries for the left hand and the right hand of the equation

are different queries. Using the same argument as in the previous case we again

bound the probability of this case by q(q−1)
2n .

Subcase 2b: ht = h∗t In this case there must be a collision before the last

iteration: Since we are assuming M 6= M∗, there must be some b with mb 6= m∗
b .

Then either hb = h∗b and we have a collision here, or hb 6= h∗b , but since ht = h∗t ,

then there must be some c > b with hc−1 6= h∗c−1 but with hc = h∗c . In any case,

since c < t, A must find a collision of the form

Eℓc

mc||mc−1
(hc−1) ⊕ hc−1 = Eℓc

m∗

c
||m∗

c−1

(h∗c−1) ⊕ h∗c−1

Since either mc 6= m∗
c or hc 6= h∗c , the queries in order to get data for the left part

and the right part of the equation must be different. Using a similar argument

than in case 1 (except that here the key ki is independent of xi) we get again

that the probability of obtaining a collision is bounded by q(q−1)
2n QED.

The TIB3 Hash 23

Preimage Resistance of the general scheme in the black-box model Any

attacker that wants now to find preimages with at most q queries has advantage

bounded by q

2n−1 . The proof is again basically the classical one, and is similar to

the previous one except that now since the attacker wants preimaghe rather than

collision, basically the sums over j that are done in the previous argument are

not there, and the bounds are simply q/2n−1 instead of the summatory obtained

there that was quadratic in q. Since it is similarr to both the classical proofs and

the previous, we skip the details.

Resistance of the general scheme against Joux’s attack In [J04], A.

Joux introduced an attack to find multicollisions in less time than what was

expected. Namely, to find two messages that collide on a hash function of length

n by the birthday paradox one requires time O(2
n

2). To find J messages that all

collide one would expect time time exponencial in both n and J , however if the

hash function is constructed using the Merkle-Damgard scheme, Joux proved

that it can be done in time exponential in n but logarithmic in J . Namely, the

attack finds 2k messages that collide in O(k2
n

2). Namely, if f is the compression

function used in the iteration hi = f(hi−1,mi), find m0
1 6= m1

1 with f(h0,m
0
1) =

f(h0,m
1
1), that is h0

1 = h1
1. Then find m0

2 6= m1
2 with f(h0

1,m
0
2) = f(h0

1,m
1
2),

that is h0
2 = h1

2. Continue k times. Then all the 2k messages mr1

1 ||...||mrk

k where

(r1, ..., rk) ∈ {0, 1}k collide.

Our recursion is not of the form hi = f(hi−1,mi), so the attack “as is” cannot

be applied and it needs to be modified.

The “obvious” modification would be, if we denote by fi the compression

function in the ith iteration, to find m0
1 6= m1

1 such that f1(h0,m
0
1,m0) =

f1(h0,m
1
1,m0). Calling that h1, then find a collision between the two func-

tions ⋆ 7→ f2(h1, ⋆,m
0
1) and ⋆ 7→ f2(h1, ⋆,m

1
1), whioch is not harder than find-

ing a collision of the same function. i.e, find m0
2 6= m1

2 with f2(h1,m
0
2,m

0
1) =

f2(h1,m
1
2,m

1
1). Then, the messages m0

1||m
0
2 and m1

1||m
1
2 do produce a partial

internal collision, i.e., h0
2 = h1

2. However it is NOT true that they also col-

lide with the messages m0
1||m

1
2 and m1

1||m
0
2. So the exponential explosion of the

Joux attack does not happen. For this modification of the attack to succeed,

one would have to find m0
2 6= m1

2 such that f2(h1,m
0
2,m

0
1) = f2(h1,m

0
2,m

1
1) =

f2(h1,m
1
2,m

0
1) = f2(h1,m

1
2,m

1
1). If f2 is random this cannot be done in time

24 Miguel Montes, Daniel Penazzi

O(2
n

2), so a Joux-like attack of this form that doesn’t take the internals of f

into consideration apparently cannot succeed. The equation f2(h1,m
0
2,m

0
1) =

f2(h1,m
0
2,m

1
1) = f2(h1,m

1
2,m

0
1) = f2(h1,m

1
2,m

1
1) can be modeled in the folow-

ing way: let random0(x) = f2(h1, x,m
0
1) and random1(x) = f2(h1, x,m

1
1). Then

one needs x 6= y with random0(x) = random0(y) = random1(x) = random1(y).

This four-way collision is different than quadruple collision (i.e. a multicollision

of cardinality 4) for random0 (where we would simply ask for x, y, z, w all differ-

ent with random0(x) = random0(y) = random0(z) = random0(w)). The latter

happens with high probability when taking 2cn samples with c about 3
4 . The

four way collision random0(x) = random0(y) = random1(x) = random1(y)

happens only with negligible probability, even when taking more than 2n sam-

ples: when takingm samples (for each of random0 and random1) the probability

of NOT finding a four way collision is

m∏

i=1

(

(1 −
i

2n
) +

i

2n
.(1 −

1

2n
) +

i

22n
.(1 −

1

2n
)

)

which is very near 1 even for high values (∼ 2n) of m. (for example, when

n = 10 the probability goes below 0.999000 only when m > 1465, which is

actually higher than 2n. With m = 21.5n the probability of not finding a four

way collision is still 60%) When n = 20 and m = 228 the probability of not

finding a 4 way colllision is 96.9233%

As an example of a test run we did using a couple of random functions, when

n = 10, taking a sample of m = 768(∼ 20.958n) one finds 268 collisions for one

function, 293 for the other, 275 collisions between them, 68 triple collisions for

one and 78 triple collisions for the other, and 13 quadruple collisions for one

function and 22 for the other, but no four-way collisions. When taking m =

100000 (this is about 21.6n) we found TWO four-way collisions. When m =

219(= 22n−1) we found 119 four way collisions.

So it appears that at least this generalization of the Joux attack cannot

succeed with work less than O(2n). However, another modification of the Joux

atack does work: from our hash function H the attacker defines a new hash

function: H∗ given by H∗(m1,m2, ...) = H(m1, q,m2, q,m3, q, ...) where q is a

fixed block. Any collision or multicollision of H∗ is clearly also a collision or

multicollision of H . And H∗ can now be (almost) put in the framework of the

Merkle-Damgard scheme. (the ”almost” part has to do with the fact that we

The TIB3 Hash 25

use the bits processed. However, this can be bypassed in the Joux attack). The

difference is that now each iteration of H∗ is two iterations of H . From the point

of view of a black box attack, it does not make any difference between using

for example ⋆ 7→ f1(h0, ⋆,m0) or of using ⋆ 7→ f2(f1(h0, ⋆,m0), q, ⋆) and so the

Joux attack, applied to H∗ produces multicollisions for H . (if we abandon the

black box model however, and instead of trying to find collisions by the birthday

paradox the attacker uses some of the innerworkings of the function, then there

is clearly a difference. In our case, the attacker will have to work with twice the

block size, 32 rounds, and will only be able to control one of the input blocks).

Resistance of the general scheme against Kelsey-Schneier’s attack In

[KS05], Kelsey and Schneier introduced a theoretical attack that shows that

on hashes that use the Merkle-Damgard iteration it is possible to find a second

preimage for a message of length 2k with k×2
n

2
+1+2n−k+1 work. The basic idea

is, given a target message, to build expandable messages that can be linked to

one of the intermediate hash values of the hash function for the target message.

As in the Joux attack, the Kelsey-Schneier attack is not directly applicable to

our scheme, but again it can be modified and applied to the hash H∗. However,

it seems that this would translate into an attack on the hash function H only if

the target message is also of the form (m1, q,m2, q,m3, q, ...). Nevertheless there

might be a further modification of the attack for the general case.

5.2 Differential Attacks

The attacker tries to find a collision by trying to track differentials, either forward

or backward. The attacker will try to generate a non-zero input difference in the

block messages that will get cancelled, leading to a collision.

The attacker might try for a one block-one iteration collision: some difference

in one message block that gets cancelled within one iteration. This is however

impossible in our scheme because, if two messages differ in only one block, say

the ith, if the attacker finds a collision in the ith iteration, since the block will

be reused in the (i+ 1)th iteration, the attacker has to get a second collision for

that iteration too. Or else, he has to get a diferential in the ith iteration that

will get canceled in the (i + 1)th iteration. In either way, the attacker has to

work through at least two iterations. (and 32 rounds)

26 Miguel Montes, Daniel Penazzi

Even so, if the attacker does not want to have to work with more iterations,

all other blocks will have to be the same. But then he cannot control several key

rounds of the ith iteration and several key rounds of the (i + 1)th iteration. If

the portion of the state paired up with those portions of the key rounds does

not have a difference, then the attacker is very happy, but if not, he or she

cannot control it, and the difference will propagate. So the attacker has to try

to carefully select the trail the differences will take.

Also, the double use of a block effectively multiplies the expansion of the

block: for example, in MD4 the block was expanded by three, by simple repe-

titions. This proved to be inadequate. In MD5 the block is expanded by four,

again with simple repetitions, and this simple extra expansion proved to be far

more resistant (more or less a decade more than MD4), altough eventually bro-

ken. SHA-1 expands by 5, and in a more complex way than MD5, but still it

was broken. SHA-256 expands by 4, but in a far more complex way than SHA-1.

Our expansion of the 1024-bit key is also by a factor of 4, but we must take into

consideration the way the cipher is going to be used in the hash function, and

ask how many times a single block of 512 bits is expanded, to get an idea of the

work of the attacker in trying to control differences. The first time a block is

used, it will be xored with the previous block and expanded into 32 sixty-four-bit

words, but 8 of those words are used twice, so this is in fact an expansion into 40

words. The block itself is used “as is” twice, so the first time it is used we have

that it has been used 7 times in one form or another. The second time it is used

it is again expanded 5 times, and used “as is” once, for a total of 6 times, and 13

times overall. Further, in the expansion itself it is used in a different way than

the first time. Moreover, due to the expansion, any single change propagates to

many different round keys.

Let’s take a closer look at the cipher: We can picture the cipher as this:

A ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
C ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
E ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
G ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

The passage through the Sboxes produce changes (restricted to A,C,E) in a

vertical, column-wise way. G suffers in the meantime horizontal changes due to

the PHTX transforma, as well as C post-passage through the Sboxes. The sums

of G into A and E into G, although they are “ vertical”, produce horizontal

The TIB3 Hash 27

changes due to the carries, so they are kind of a mixed change. In every 4-round

cycle each word passes through 2 individual horizontal changes, three vertical

changes and is involved in two more mixed changes. This ensures that the number

of active Sboxes multiply rapidly.

As we said above, the attacker might try to leave some round keys unchanged,

at least through some rounds, and try to folllow the evolution of any small change

in the state through some probabilistic trail. However, after a few rounds of even

a 1 bit change in the state, there are more than 40 active Sboxes per round, in

fact usually there are more than 50. Since the passage of any specific non zero

difference through the Sbox to reach another specific non zero difference hold

with probability either zero or 2−2, it follows that after just two rounds with

just 32 active Sboxes in each of them (and, as said above, there are usually 50

after a couple of rounds if the key rounds are the same) the attacker will face a

probability of (2−2)64 = 2−128, and since anyway a birthday attack of complexity

O(2128) can always be mounted against a hash function of 256 bits, there is no

point in trying this attack. We are not even counting the probabilities involved

through passage by the sums.

So the attacker has to try to have changes in the message blocks that en-

sure that there are some change in the key rounds to offset the changes in the

state, not necessarily every round, but he/she cannot afford to let too many

rounds pass without change. However, the changes in the keys should not be too

high, otherwise again the number of active Sboxes will explode beyond the 64

threshold. The key expansion, being non-linear, is difficult to analyze. However,

it seems doubtful to find any input words that would produce an expanded key

of hamming weight of less than 200. (Actually, we have never found any with

less than 400). To these one must add the other part of the expansion of the key,

plus the fact that each block is used twice, so it seems safe to say that finding a

collision should be well beyond the 2128 work factor.

Similar considerations apply to the 512 bit version:here the threshold is now

2256, but there are 128 Sboxes per round, and the expansion plus the diffusion

ensure that very quicly one gets at least 80-90 active Sboxes per round.

28 Miguel Montes, Daniel Penazzi

5.3 Algebraic Attacks

Here, the attacker tries to create a system of nonlinear (usually quadratic) equa-

tions, that represent the internal operations of the hash, and then solve them

by means of of some algorithm, for example a Grobner base reduction or a more

specialized algorithm like the XSL algorithm. The Sboxes used in TIB3 are sus-

ceptible to this attack because they are 3 by 3 Sboxes. (The original attack

against some versions of Serpent and Rijndael made use of two things: in the

case of Rijndael, that the Sboxes were algebraic, and in the case of Serpent, that

the 4 by 4 Sboxes were small. The Sbox of TIB3 is both small and algebraic,

so they should be easy targets. This is offset by the fact that there are 64 of

them in each round for a total of 1024 for the whole cipher, plus the use of the

shifts that move the bits around, so the system of equations of a cipher similar

to TIB3 but that uses only xors and shifts would be very complicated, similar to

the system of Serpent. (Serpent has 32 rounds but only 32 Sboxes per round, the

total is again 1024 Sboxes). But in TIB3 besides xors and shifts, 32-bit sums are

also used. (although we described the cifer with both 32-bit sums in parallel and

64-bits sums, the 64-bits sums are only on the high bits, so they are effectively

32-bit sums). Each sum requires tens of equations of the bits to describe. In the

main portion of the cipher, there are 8 sums in each round, for a total of 128

sums for the whole 16 rounds. Also, in the expansion of the key there are 3 sums

in each iteration, which gives a total of 72 more sums. In the whole cipher then

there are 200 sums, so there is adequate protection for the algebraic attacks.

Other types of algebraic attacks, like attacks of interpolation, also require

that the degree of the polynomial that describes the function is either not very

high or sparse. The polynomial that represents the Sbox is 6x6 + 3x3 + 5x4 +

7x3 + x2 + 4x + 6 and since there are 64 of them in each round the complete

polynomial is sufficiently complicated. Plus, as before, the use of 32 bit sums

complicate the picture. In general these attacks work best for functions that

work essentially within one field or group. TIB3 is not one of those functions.

5.4 Fixed Points

In a usual construction hi = f(hi−1,mi) a fixed point is a pair (h,m) with

h = f(h,m), which allow the attacker to repeat m at will.

The TIB3 Hash 29

Because we use the bits processed and previous block, we have a recursion

that can be described as hi = fi(hi−1,mi,mi−1). Then even finding h,m,m∗

with h = fi(h,m,m
∗) does not guarantee that we can keep the fixed point one

more round. First of all there is the problem that the next input would be of

the form (h, ⋆,m). But assume that ⋆ can be chosen to be m∗ so as to be able

to repeat the message m∗mm∗m.... Even so, now this must be also a fixedpoint

for fi+1. So the attacker would have to find a multiple fixed point, which seems

rather improbable.

6 Performance

As can be seen below, TIB3 has excellent performance on long messages. On

messages of one block length or less, it suffers from the fact that we always

process at least two blocks, unlike other hashes in which if the length is, say,

half a block, they pad, add the length and process just that block. Instead we

pad, process the block, and then process the last block with the length.

Briefly stated, on the reference platform Core2Duo 2.4 GHz running Vista

64-bits, TIB3 hashes at about 290-300 MB/sec for the 224 and 256 versions

and at about 350 MB/sec for the 384 and 512 versions for long messages but

with a significant reduction for shorter messages, and running Vista 32 bits

the 224 and 256 versions run at about 173 MB/sec for long messages, and the

384/512 versions at about 130 Mb/sec, again with significant reduction for short

messages.

So in 64- bits either TIB3-256/224 or TIB3-512/384 have excellent perfor-

mance, with TIB3-512/384 better, while on 32 bits there is a sharp drop in the

performance,though still very good, but in this case the 256/224 versions are

better than the 512/384.

6.1 Performance on 64-bit processors

Performance on the reference platform On the reference platform Core2Duo

2.4 Mhz with 4GB of RAM running Vista Ultimate 64-bit, we obtain the results

shown below with the optimized version for 64 bits compiled using Visual Studio.

We did a test of the number of cycles needed to hash one message of length

256, 504, 512, 513, 1016, 1024, 5120, 10240, 102400 and 1024000 bits. We ran

30 Miguel Montes, Daniel Penazzi

the test 100 times, took the minimum and a sample of 8 of the 100 results to see

variability. The tables below show in the first line the length of the message, the

second the minimum number of cycles per bit hashed, then the 8 samples, and

then the actual number of cycles for the minimum. The last line is the speed

estimate based on the 2,4GHz clock, measured in MBytes/sec. (Mega=220).

Cycle Test on 224 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

4.36 2.21 2.13 3.13 1.58 1.57 1.08 1.02 0.96 0.96

4.41 2.26 2.23 3.20 1.64 1.61 1.08 1.03 2.05 0.97

4.36 2.33 2.16 3.13 1.61 1.58 1.10 1.03 0.97 0.97

4.36 2.26 2.23 3.23 1.64 1.62 1.08 1.03 0.97 0.97

4.41 2.31 2.18 3.16 1.61 1.59 1.10 1.02 0.97 0.97

4.36 2.26 2.25 3.25 1.64 1.63 1.09 1.03 0.97 0.97

4.41 2.33 2.16 3.16 1.59 1.58 1.10 1.03 0.97 0.96

4.36 2.26 2.23 3.23 1.64 1.63 1.09 1.03 0.97 0.96

4.41 2.31 2.16 3.16 1.59 1.59 1.10 1.03 0.97 0.96

1116 1116 1092 1608 1608 1608 5532 10440 98460 979368

65.63 129.21 134.14 91.27 180.77 182.19 264.79 280.62 297.55 299.14

Cycle Test on 256 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

4.41 2.24 2.18 3.16 1.58 1.56 1.09 1.03 0.97 0.96

4.41 2.31 2.25 3.25 1.64 1.61 1.09 1.03 0.98 0.97

4.45 2.24 2.18 3.18 1.61 1.57 1.09 1.03 0.98 0.97

4.45 2.31 2.25 3.23 1.64 1.57 1.09 1.03 0.98 0.96

4.41 2.24 2.18 3.16 1.58 1.57 1.09 1.03 0.98 0.96

4.45 2.31 2.25 3.23 1.59 1.57 1.09 1.03 0.98 0.96

4.45 2.24 2.18 3.18 1.59 1.57 1.09 1.03 0.98 1.01

4.41 2.31 2.25 3.25 1.61 1.57 1.09 1.03 0.97 0.96

4.45 2.24 2.18 3.18 1.59 1.57 1.09 1.03 0.98 0.96

1128 1128 1116 1620 1608 1596 5556 10536 99552 979992

64.93 127.83 131.26 90.60 180.77 183.56 263.65 278.06 294.28 298.95

The TIB3 Hash 31

Cycle Test on 384 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

6.98 3.57 3.54 3.53 1.77 1.75 0.98 0.89 0.80 0.79

7.03 3.62 3.66 3.58 1.80 1.79 0.99 0.89 0.80 0.79

6.98 3.62 3.59 3.60 1.81 1.77 0.99 0.89 0.80 0.79

6.98 3.64 3.68 3.56 1.78 1.78 0.99 0.89 0.80 0.79

6.98 3.62 3.59 3.53 1.81 1.76 0.99 0.90 0.80 0.79

6.98 3.57 3.63 3.56 1.80 1.79 0.99 0.89 0.80 0.79

6.98 3.62 3.59 3.60 1.81 1.76 0.99 0.89 0.80 0.79

6.98 3.57 3.63 3.60 1.78 1.79 0.98 0.89 0.80 0.79

6.98 3.64 3.56 3.58 1.82 1.76 0.99 0.89 0.80 0.79

1788 1800 1812 1812 1800 1788 5016 9072 81552 804300

40.96 80.11 80.84 81.00 161.49 163.85 292.03 322.93 359.24 364.25

Cycle Test on 512 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

7.13 3.64 3.59 3.58 1.78 1.76 0.99 0.89 0.79 0.78

7.13 3.71 3.68 3.67 1.78 1.82 0.99 0.89 0.80 0.79

7.13 3.67 3.59 3.60 1.82 1.76 0.99 0.89 0.80 0.79

7.13 3.74 3.68 3.67 1.80 1.80 0.99 0.89 0.80 0.79

7.13 3.67 3.61 3.60 1.83 1.76 0.99 0.90 0.80 0.79

7.13 3.71 3.68 3.67 1.78 1.79 0.99 0.89 0.80 0.78

7.13 3.64 3.61 3.60 1.82 1.77 0.99 0.90 0.80 0.78

7.13 3.71 3.66 3.67 1.80 1.79 0.99 0.89 0.80 0.80

7.13 3.67 3.61 3.58 1.83 1.77 0.99 0.90 0.80 0.78

1824 1836 1836 1836 1812 1800 5052 9120 81204 800964

40.15 78.54 79.78 79.94 160.42 162.76 289.95 321.24 360.78 365.77

Other test measured the speed directly, hashing many messages of the re-

quired length and taking the actual time as measured by the clock counter. We

obtained the following results:

TIB3-224:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
62 122 127 90 179 180 255 278 284 284 MB/sec

32 Miguel Montes, Daniel Penazzi

TIB3-256:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
60 122 127 81 170 180 255 279 284 284 MB/sec

TIB3-384:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
40 78 78 78 161 161 280 307 348 347 MB/sec

TIB3-512:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
39 77 77 76 155 161 280 307 349 348 MB/sec

The call for SHA-3 requires to measure the number of cycles to set-up the

algorithm, e.g. in constructing internal tables. We do not have any such table

constructions, the only thing would be the settings of the IVs. So we measured

the cycles needed to do the “Init” procedure in the specifications, which sets up

the initial state. Because the number of cycles is very low we did 10000 tests and

saved the minimum and the median.

In the 224/256 versions the minimum is 18 cycles and the median 27 cycles.

In the 384/512 versions the minimum is 36 cycles and the median 45 cycles.

Performance On Linux 64-bits On the reference Core2Duo 2.4 Mhz with

4GB of RAM running Mandriva of 64 bits, compiling with gcc, similar tests give:

Cycle Test on 224 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

4.78 2.43 2.37 3.42 1.71 1.69 1.16 1.09 1.04 1.03

4.83 2.43 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

4.83 2.43 2.37 3.42 1.71 1.69 1.16 1.09 1.04 1.07

4.83 2.43 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

4.83 2.45 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

4.78 2.43 2.37 3.44 1.71 1.69 1.16 1.10 1.04 1.03

4.78 2.43 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

4.78 2.43 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

4.83 2.43 2.37 3.42 1.71 1.69 1.16 1.10 1.04 1.03

1224 1224 1212 1752 1740 1728 5940 11208 106080 1053072

59.84 117.81 120.86 83.77 167.06 169.54 246.61 261.39 276.18 278.20

The TIB3 Hash 33

Cycle Test on 256 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

4.78 2.40 2.37 3.42 1.72 1.71 1.16 1.09 1.03 1.03

4.83 2.40 2.39 3.44 1.72 1.72 1.16 1.09 1.03 1.03

4.83 2.40 2.37 3.44 1.74 1.71 1.16 1.09 1.03 1.03

4.83 2.40 2.39 3.44 1.74 1.72 1.16 1.09 1.03 1.03

4.83 2.40 2.39 3.42 1.72 1.72 1.16 1.09 1.03 1.03

4.78 2.40 2.37 3.44 1.72 1.72 1.16 1.09 1.03 1.03

4.83 2.40 2.39 3.42 1.74 1.72 1.16 1.09 1.03 1.03

4.83 2.40 2.39 3.44 1.74 1.72 1.16 1.09 1.03 1.03

4.83 2.40 2.37 3.44 1.72 1.71 1.16 1.09 1.03 1.03

1224 1212 1212 1752 1752 1752 5964 11208 105720 1053036

59.84 118.97 120.86 83.77 165.91 167.22 245.61 261.39 277.12 278.21

Cycle Test on 384 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

8.25 4.21 4.12 4.14 2.07 2.04 1.15 1.04 0.92 0.91

8.30 4.21 4.15 4.14 2.08 2.05 1.15 1.04 0.92 0.92

8.30 4.21 4.15 4.14 2.08 2.04 1.15 1.04 0.92 0.92

8.30 4.21 4.15 4.14 2.08 2.04 1.15 1.04 0.92 0.92

8.30 4.21 4.15 4.14 2.08 2.04 1.15 1.04 0.92 0.92

8.30 4.21 4.15 4.14 2.08 2.05 1.15 1.04 0.92 0.92

8.34 4.21 4.15 4.14 2.08 2.05 1.15 1.04 0.92 0.92

8.30 4.21 4.15 4.14 2.08 2.05 1.15 1.04 0.92 0.93

8.34 4.21 4.15 4.14 2.07 2.04 1.15 1.04 0.92 0.93

2112 2124 2112 2124 2100 2088 5880 10620 94392 936840

34.68 67.89 69.36 69.10 138.42 140.31 249.12 275.87 310.37 312.72

Cycle Test on 512 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

8.39 4.21 4.22 4.21 2.10 2.06 1.16 1.04 0.94 0.92

8.44 4.24 4.22 4.21 2.11 2.07 1.16 1.04 0.94 0.93

8.39 4.21 4.22 4.21 2.11 2.07 1.16 1.04 0.94 0.93

34 Miguel Montes, Daniel Penazzi

8.39 4.24 4.22 4.21 2.13 2.07 1.16 1.04 0.94 0.93

8.39 4.21 4.24 4.21 2.11 2.06 1.16 1.04 0.94 0.92

8.39 4.24 4.22 4.21 2.10 2.07 1.16 1.04 0.94 0.92

8.39 4.21 4.22 4.21 2.11 2.07 1.16 1.04 0.94 0.92

8.39 4.24 4.22 4.21 2.10 2.07 1.16 1.04 0.94 0.92

8.39 4.21 4.24 4.21 2.11 2.07 1.16 1.04 0.94 0.92

2148 2124 2160 2160 2136 2112 5916 10656 95844 937092

34.10 67.89 67.82 67.95 136.09 138.72 247.61 274.93 305.67 312.64

TIB3-224:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
54 108 111 78 154 160 240 252 271 271 MB/sec

TIB3-256:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
54 108 111 78 154 160 240 252 271 271 MB/sec

TIB3-384:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
33 64 65 65 129 132 240 281 305 305 MB/sec

TIB3-512:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
32 63 63 64 126 129 240 266 305 305 MB/sec

6.2 Performance on 32-bit processors

The algorithm was build in such a way to be adaptable to both 32 and 64 bit

processors. The sums are, except for some in the 384/512 versions, actually all

32-bit sums, and the shift are actually shifts of 32-bit words.

On the reference platform Core2Duo 2.4 Mhz with 2GB of RAM running

Vista 32-bit, we obtain the following results with the optimized version for 32

bits compiled using Visual Studio.

As before, the first line indicate the number of bits of the message, the sec-

ond the mimum number of cycles per bit over all tests, then a sample to show

regularity, the next to last line is the actual number of cycles and the last line

is estimated speed based on the speed of the processor.

Cycle Test on 224 version

The TIB3 Hash 35

256 504 512 513 1016 1024 5120 10240 102400 1024000

7.59 3.86 3.75 5.40 2.73 2.68 1.83 1.73 1.63 1.62

7.78 3.90 3.82 5.47 2.76 2.68 1.84 1.74 1.63 1.62

7.64 3.88 3.77 5.47 2.76 2.70 1.84 1.74 1.63 1.62

7.83 3.93 3.75 5.47 2.76 2.70 1.83 1.74 1.63 1.62

7.64 3.90 3.77 5.47 2.74 2.68 1.84 1.74 1.63 1.62

7.59 4.10 3.75 5.47 2.75 2.70 1.84 1.74 1.63 1.62

7.83 3.88 3.77 5.47 2.76 2.73 1.84 1.74 1.63 1.62

7.64 3.90 3.75 5.47 2.75 2.73 1.84 1.74 1.63 1.62

7.78 3.90 3.77 5.47 2.74 2.70 1.84 1.74 1.63 1.62

1944 1944 1920 2772 2772 2748 9372 17712 166620 1663524

37.68 74.17 76.29 52.95 104.86 106.61 156.30 165.41 175.83 176.11

Cycle Test on 256 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

7.78 3.83 3.80 5.45 2.73 2.68 1.83 1.72 1.63 1.62

7.83 3.93 3.82 5.47 2.75 2.72 1.84 1.73 1.63 1.62

7.83 3.93 3.82 5.47 2.83 2.84 1.84 1.73 1.63 1.62

7.83 3.83 3.82 5.47 2.75 2.71 1.84 1.73 1.63 1.62

7.83 3.90 3.82 5.47 2.75 2.71 1.84 1.73 1.63 1.62

7.83 3.90 3.82 5.47 2.75 2.70 1.84 1.73 1.63 1.62

7.83 4.14 3.82 5.47 2.74 2.71 1.84 1.73 1.63 1.62

7.83 3.93 3.82 5.47 2.75 2.77 1.84 1.73 1.63 1.66

7.83 3.93 3.82 5.47 2.75 2.71 1.84 1.73 1.63 1.62

1992 1932 1944 2796 2772 2748 9360 17640 166608 1662948

36.77 74.64 75.35 52.49 104.86 106.61 156.50 166.08 175.84 176.17

Cycle Test on 384 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

18.89 9.57 9.42 9.40 4.71 4.66 2.69 2.44 2.21 2.21

18.94 9.60 9.45 9.43 4.72 4.68 2.69 2.44 2.21 2.39

18.89 9.57 9.42 9.43 4.71 4.68 2.69 2.44 2.21 2.21

36 Miguel Montes, Daniel Penazzi

18.89 9.57 9.45 9.43 4.71 4.68 2.69 2.44 2.21 2.21

18.89 9.57 9.42 9.43 4.81 4.69 2.69 2.44 2.21 2.25

18.89 9.60 9.45 9.43 4.71 4.68 2.69 2.44 2.21 2.21

18.94 9.57 9.42 9.43 4.72 4.68 2.69 2.44 2.21 2.21

18.89 9.57 9.45 9.43 4.71 4.69 2.69 2.44 2.21 2.27

18.89 9.60 9.42 9.43 4.71 4.69 2.69 2.44 2.21 2.21

4836 4824 4824 4824 4788 4776 13752 24960 226764 2262060

15.15 29.89 30.37 30.43 60.71 61.34 106.52 117.38 129.20 129.51

Cycle Test on 512 version

256 504 512 513 1016 1024 5120 10240 102400 1024000

19.03 9.64 9.49 9.47 4.74 4.73 2.69 2.44 2.22 2.21

19.03 9.64 9.52 9.50 4.84 4.73 2.70 2.44 2.22 2.21

19.08 9.64 9.52 9.66 4.75 4.75 2.70 2.44 2.22 2.21

19.08 9.64 9.52 9.47 4.76 4.75 2.70 2.44 2.22 2.21

19.08 9.64 9.52 9.47 4.75 4.73 2.70 2.44 2.22 2.21

19.08 9.64 9.52 9.50 4.76 4.73 2.71 2.44 2.22 2.21

19.08 9.64 9.52 9.50 4.76 4.73 2.69 2.44 2.22 2.21

19.08 9.64 9.52 9.50 4.75 4.73 2.70 2.44 2.22 2.21

19.03 9.64 9.52 9.50 4.75 4.73 2.70 2.44 2.22 2.21

4872 4860 4860 4860 4812 4848 13788 25008 226848 2262372

15.03 29.67 30.14 30.20 60.41 60.43 106.24 117.15 129.15 129.50

Running actual tests for speed we obtain:

TIB3-224:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
36 73 74 52 102 105 153 162 173 173 MB/sec

TIB3-256:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
36 73 74 51 102 105 153 161 173 173 MB/sec

TIB3-384:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
15 29 30 30 60 61 106 117 130 130 MB/sec

The TIB3 Hash 37

TIB3-512:

256 504 512 513 1016 1024 5120 10240 102400 1024000 bits
15 30 30 29 59 60 106 118 125 130 MB/sec

The call for SHA-3 requires to measure the number of cycles to set-up the

algorithm, e.g. in constructing internal tables. We do not have any such table

constructions, the only thing would be the settings of the IVs. So we measured

the cycles needed to do the “Init” procedure in the specifications, which sets up

the initial state. Because the number of cycles is very low we did 10000 tests and

saved the minimum and the median.

In the 224/256 versions the minimum is 99 cycles and the median 108 cycles.

In the 384/512 versions the minimum is 117 cycles and the median 126 cycles.

32-bit restricted environment The Optimized 32 bit version was compiled

for Windows Mobile 5.0 for ARMV4i and tested on an iPaq with processor

ARM92OT S3C2442A with 53.88 MB RAM obtaining 3.17 Mb/seg for the 256

bit version.

6.3 Performance on 8-bit processors

As we explained above, TIB3-256 can be easily thought in terms of 32-bit reg-

isters, so we model this operations now on 8-bit registers. Since TIB3 uses only

logical operations, sums and shifts, it should be easily implemented on 8-bit

processors.

Data Memory requirements The data memory requirements are: 64 bytes

for the current block, 64 bytes for the previous block, 32 bytes for the hash, 32

bytes to hold the hash state at the start of the encryption in order to do the

Davies-Meyer update, 80 bytes for the recursion of the expansion and 8 bytes to

keep the bits processed, so a total of 280 bytes.

General Considerations We consider each part of the encryption step sepa-

rately.

The Expansion of the key:

Here we have the ψ function. When viewed as operating on 32-bit word, ψ

uses six 32-bit xors, three 32-bit sums and two shifts, one of 11 bits, the other

of 7.

38 Miguel Montes, Daniel Penazzi

ψ is used 24 times in the expansion, to which we have to add 8 more xors in

calculating the input to the expansion, plus 20 more xors when calculating the

inputs to the first two uses of ψ. So the whole expansion uses 72 sums, 100 xors

and 48 shifts.

Rounds of Encryption

Each round of encryption has 8 xors, 4 sums, two PHTXs and a passage

through the Sboxes. Each PHTX uses 2 sums, 2 xors and 2 shifts. So we have a

total for the round of 10 xors, 8 sums and 2 shifts plus the Sbox.

As we said earlier the Sbox can be modeled bitsliced with the boolean func-

tions:

f(x, y, z) = x⊕ (y ∧ z)

g(x, y, z) = z ⊕ (x ∧ y)

h(x, y, z) = y ⊕ (x ∧ z)

That would be 3 xors, 3 ands and 4 negations plus two copies into temporary

registers. In fact it can be modeled taking temporary registers t1 and t2 as:

t1 = z

t2 = y

z = x

y = x ∨ y

x = x

z = z ⊕ t2

t2 = t2 ∧ t1

y = y ⊕ t1

x = x⊕ t2

so a total of 9 operations which have to be repeated on 32-bit registers, thus we

have 18 logical operations.

The TIB3 Hash 39

Thus each round has 8 sums, 28 logical operations, and 2 shifts. There are 16

rounds, so the encryption proper after the expansion of the key takes 128 sums,

448 logical operations and 32 shifts.

The total for the encryption (rounds+expansion) is 200 sums, 548 logical op-

erations and 80 shifts. We may be undercounting some moves between registers.

After the encryption we have 8 xors for the Davies-Meyer update, and the

update of the bits processed, which is the sum of 512 (or less) to a 64-bit register,

so this is 2 more sums.

To this we have to add the initialization, which is just the copy of 768 bits=24

32-bit registers plus the last iteration. The last iteration is like the others, but

there is an extra xor of the hash and the block, this affects only 256 bits

So, to hash a message of length t blocks we need approximately 202t+ 200

sums, 556t+ 558 logical operations and 80t+ 80 shifts.

Efficiency on an ideal model If we assume a processor model with several

8-bit registers (for example four) in which the logical and arithmetic operations

(and,or, xors, sums) take one cycle on each register, and such that the sum on

32-bit words then takes 8 cycles to implement, shifts take 12 cycles and other

logical operations take 4 cycles, then the total number of cycles for a message of

length t blocks would be 4800t+ 4792 cycles (on code that should be optimized

for 8-bit processor)

If instead we have also 8 cycles per logical operation then the total is 7024t+

7024 cycles. (these estimates and the general model are similar to the ones the

MARS team did in their presentation. See [B99])

Assuming 20MHz, for long messages where we can disregard the overhead

of 4792 (7024) cycles, we are hashing about 4000 blocks (2800) of 512 bits per

second, about 2Mbit/sec. (1.4Mbit/sec), if we assume one instruction cycle=one

clock cycle like MARS did. In practice however it could be one instruction cy-

cle=4 clock cycles, so the speed would be in the order of 350Kbit/sec. If instead

of hashing a long message one has to hash many one-block messages, then each

such message has the overhead of the extra encryption, so the speed is halved.

However, in many cases one does not use many 8-bit registers but only one.

In that case the cost of moving data in and out of the register is a great factor.

40 Miguel Montes, Daniel Penazzi

For example, the cost of doing one xor of two 8-bit quantities is at least 3

cycles: one cycle to move one of the quantities into the register, another to xor

the other, then a third cycle to move the content of the register into another

location. On the other hand if one makes several xors like a = b⊕ c⊕ d⊕ e, we

still have only two moves and three xors.

With only one register the cost of doing the same operation on a 32-bit word

grows fast, because one need to constantly move in and out of the register 8-bit

quantities. In particular a xor of two 32-bit words cannot be made in parallel.

We estimate that sums and xors will take 16 cycles, a shift of 1 five cycles, and

others correspondingly higher.

So in such a model we expect the estimate above to be much higher so we

did a simulated implementation

Simulated implementation We implemented the code on a simulated 8-bit

micro-controller.

We simulated MicroChip PIC18F452 running at 40 Mhz. We used:

Developing environment MPLAB IDE v8.10,

Compiled with compiler MPLAB C18

In the simulation of that micro-controller each assignment takes between 2 or

3 instruction cycles, logical operations and sums of 8-bit registers take 7 cycles

and shifts of 8-bit registers take 5 cycles, instead of the 1 cycle we assumed on

the general model.

Logical operations or the sum on 32-bit registers take both 36 cycles. (about

four times the cost of the corresponding operation on 8-bit).

Shifts are very dependent on the amount shifted. The shifts used in our

algorithm are:

<<11: 114 cycles.

<<15: 146 cycles.

>>11: 113 cycles.

>>7: 80 cycles.

(with better optimization this numbers can be wrought down onto the 40-50

range). This numbers came from the fact that we used a C code in terms of

32-bit registers to implement it. The simulator optimized area, not speed. If we

The TIB3 Hash 41

were to hand code it, then a shift by 11 can be done in about 10-20 instructions,

but the simulator did not do it that way.

Assuming an average of 120 cycles for each shift, plus the 36 cycles per logical

operation or sum, we would expect about 36888 cycles per encryption plus several

more cycles due to temporary assignments, on an optimized code. Since the code

is not optimized for speed we expected more cycles, and effectively the simulation

obtained 45468 instruction cycles per encryption. In this processor (or at least

in the simulator) each instruction cycle takes 4 clock cycles, that is the 40Mhz

speed translates into 10 million instruction cycles per second. Effectively the

time the simulator gave was 4.5468 mSecs per encryption, roughly 113Kbit/sec.

TIB3-384 and TIB3-512 are basically doubled versions of TIB3-256. The only

difference is that TIB3-512 uses also some 64-bit sums, so the numbers would

be somewhat larger than twice the numbers for TIB3-256.

6.4 Hardware Implementation

We made a preliminary implementation on a FPGA Xilinx Virtex4 xc4vsx35ff668-

12 t requiring 6062 slices from a total of 15360 (39%) and 11141 LUTs from a

total of 30720 (36%) with a maximum propagation path of 70.797ns (14,12 MHz).

HDL Synthesis Report

Macro Statistics

Adders/Subtractors : 176

32-bit adder : 32

64-bit adder : 144

Xors : 2744

1-bit xor2 : 416

1-bit xor3 : 1440

1-bit xor4 : 768

512-bit xor2 : 1

64-bit xor2 : 118

64-bit xor3 : 1

We thank Jorge Naguil for translating the algorithm to VHDL.

42 Miguel Montes, Daniel Penazzi

References

[B99]: C. Burwick, et al., “MARS – A Candidate Cipher for AES”, AES

algorithm submission, August 1999.

[BRS02]: Black,Rogaway,Shrimpton Black-Box Analysis of the Block-Cipher-

Based Hash-Function Constructions from PGV,Crypto 02.

[FP05]: Fontana, S.; Penazzi, D. A study of 3 by 3 S-boxes and its applica-

tion on a bitsliced multiplicative cipher: Quetzalcoatl, Acts of the III Congreso

Iberoamericano de Seguridad Informatica, (CIBSI05), Valparaiso, Chile. (1995).

[J04] A. Joux. Multicollisions in iterated hash functions, application to cas-

caded constructions, Crypto 04, LNCS 3152, pp 306-316 (2004)

[KS05], Kelsey J.,Schneier, B. Second preimages on n-bit Hash Functions for

much less than 2n work., EUROCRYPT 2005, LNCS 3494, pp 474-490. (2005).

[N94]: K. Nyberg, Differentially Uniform Mappings for Cryptography, Ad-

vances in Cryptology, EUROCRYPT 93, LNCS 765, Springer-Verlag, 1994, pp

55-64.

[PGV93]: B. Preneel, R. Govaerts, J. Vandewalle. Hash functions based on

block ciphers: A synthetic approach. Advances in Cryptology-CRYPTO 93 pp.

368-378. Springer-Verlag, Berlin, Germany, 1994.

