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three types, based on the properties of their GCM:

Q finite,
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Q@ indefinite.
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An element a € h*, is called a root of g if & £ 0 and

{0} # ga = {x € g|[h. x] = a(h)x, h € b}.

A fundamental problem in the study of Kac-Moody algebras is
to determine the root multiplicities, i.e. the dimension of the root
spaces gq.

These are known to be 1 for finite type, and affine type root
multiplicities are also all known.
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For indefinite type Kac-Moody algebras, some results have
been given for

@ HA (Feingold and Frankel, 1983)

@ HAY) (Kang and Melville, 1994),

Q Eyo = HEYY (Kac, Moody, Wakimoto, 1998), HGS'") and
HD{® (Hontz and Misra, 2002), and

@ Hc'Y (Kiima and Misra, 2002).
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Introduction

ntroducing HD'"

Consider the Kac-Moody algebra HDf,” with Dynkin diagram
given below:
1 n—1

4 0 2 3  n-2n

It is an indefinite Kac-Moody algebra containing the affine
Kac-Moody algebra D,(f). There is a construction of HD,(,” in
terms of D,‘,”—modules.

Evan A. Wilson
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Construction of HD}:) from ij)

Outline of the Construction

The construction of HD,(71) has three ingredients:
@ The Lie algebra go := D,(,”.
@ The go-modules V(Ag) and V*(Ao).
@ A go-module homomorphism ¢ : V*(Ag) ® V(Ag) — go.

Evan A. Wilson
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go-module homomorphlsm

The map
¥ V(o) ® V(Ao) — g0

given by

VR W =Y (VX w)xi — 2(vF, w)e
iez

is a go-module homomorphism, where g, is considered as a
module under the adjoint action.
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> Lie Algebra g.

Now, let g1 := V(Ag), -1 := V*(Ao), §— and .. be the free Lie
algebras generated by g_4 and g4 respectively. Let
g+ = span{[y1, [z, [- -, Viet, ¥il - - - 14, Yo, - -, ¥i € B )

The vector space g := §— @ go ©® §-+ Is a graded Lie algebra with
bracket given by extending the following:

[V, w] = ¢(v" @ w).

Evan A. Wilson



Construction of HD}:) from Dﬁ”

he Ideal J.

Let Jik := {x € gklly1, Vo, -, V-1, x] ... ]l =
0,Vy1, Y2, .-, Yk—1 € §+1}. Let Jx == Py~ 1 J1k and
J=di@dJ.

Evan A. Wilson
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> |deal J.

Let Jok = {x € Gklly1, V2, Wk1,X] .- ]] =
O,Vy1,y2, e Yk—1 € ﬁi1}. Let Jy = @k>1 Jik and
Ji=d, o J_.

J+ and J_ are ideals of §, and J is the maximal graded ideal
that intersects §_1 @ go ® g1 trivially.
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Let Jok = {x € Gklly1, V2, Wk1,X] .- ]] =
O,Vy1,y2, e Yk—1 € ﬁi1}. Let Jy = @k>1 Jik and
Ji=d, o J_.

J+ and J_ are ideals of §, and J is the maximal graded ideal
that intersects §_1 @ go ® g1 trivially.

Let g(A) be the Kac-Moody algebra with GCM A, and let g, be
a subalgebra of g(A). Then g(A) is isomorphic to §/J.

Evan A. Wilson
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ang’s Multiplicity Formula

By Kostant’s theorem for Lie algebra cohomology and the
Euler-Poincaré principle:

[T (0 —e(@)me)=1-"3" (=1)*ch(V(w(p) - p))

acA—(S) wew(s)
Lw)>1
where
e S={0,1,...,n}: The index set of simple roots of
go = DY,

@ Ag : The set of roots of gg.

° A§ : The set of positive (resp. negative) roots of gg.
o A%(S): AT\AS.

o W(S):{we WlwA - nAT C AT(S)}.
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For a positive integer / > 0, we say that a finite classical crystal
B is a perfect crystal of level | if it satisfies the following
conditions:

Q there exists a finite dimensional Ug(g)-module with a
crystal base whose crystal graph is isomorphic to B,

Q B ® Bis connected,

@ there exists a classical weight \g € P such that
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ect Crystal (cont.)

Q for any b € B, we have (c,e(b)) > |,

@ for each \ € P, there exist unique b* € B and by € B such
that (b*) = X, p(by) = A,

where g(b) = > ci(b)Ai, (b) = e, pi(D)A;, and
P ={)e Ptic,\) =1}

Evan A. Wilson
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Example: level 1 perfect crystal for D,

0
4
YN
1 2 _ 2 _ 1 _
PN
4
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Fix a positive integer | > 0 and let B be a perfect crystal of level
I. For any classical dominant weight X € P;", there exists a
unique crystal isomorphism

W B\ = B(e(by)) @ B

given by uy — U.p,) ® by, where by is the unique element in B
such that ¢(by) = A.

Evan A. Wilson
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Model (cont.)

Set Ao = A, )\k+1 = 6()\/(), bo = b)\, bk+1 = b)\k+1' The
sequences
W) = (Ak)kZo: ba := (bk)kZo;

are periodic with the same period N.

@ The sequence b, is called the ground-state path of weight
A

Q A )\-pathin B is a sequence p = (px)r>, With px = by for
all k > 0.

Evan A. Wilson
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We now consider only g = HD,(J).

@ The degree of aroot a = — Y7, aja; is defined to be a_4
and is denoted deg(«).

@ Consider the element —/a_1 — ké € Q—, where
§ = ag+ay + 22 aj + an_q1 + an. Then we have the
following:
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We now consider only g = HD,(J).
@ The degree of aroot a = — Y7, aja; is defined to be a_4
and is denoted deg(«).
@ Consider the element —/a_1 — ké € Q—, where

§ = ag+ay + 22 aj + an_q1 + an. Then we have the
following:

a = —la_4 — k& is a root of HDS) only ifk > I. If | = k then
mult(a) = n.

Evan A. Wilson



Root Multiplicities of HD!)

A Lemma on W(S).

Here are the elements of W(S) of length 1 and 2:

Evan A. Wilson



Root Multiplicities of HD!)

A Lemma on W(S).

Here are the elements of W(S) of length 1 and 2:

‘ U(w) ‘ w ‘ wp—p ‘ level ‘
1 r_4 —0_q1 = /\o 1
2 rir | —2a_4 — ag = No — 1) 2

Evan A. Wilson
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oots of degree 1

If o = —a 1 — ko then mult(c«) = dim(V(Ag).). These are given
for D by the following generating series:

o0

Zdlm (Ao)no—ke)d“ = TJ(1 = )"

i=1

Using the binomial expansion (1 —g')~" = > ( j”)q’f, we
can in principle compute the multlpI|C|ty of « for any k. In
particular, we see that it is a polynomial in n of degree k.

Evan A. Wilson



The first few multiplicity polynomials are given in the following

table:
| Root | Multiplicity \

—a_1—90 n

—a_q—25 n(n+3)

T m 14)

nn n n+

ey (0+3)(n+6)(P+21148)
n(n+ n+ n-+21n+

—1 — 50 120

Evan A. Wilson
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Degree 2 Roots

For 7 € Py let

=) dim(V(Ag)x)dim(V(Ag)r—»)-

AT

Then Kang’s formula gives:

mult(—2a_1 — 3(5) = X(2/\0 — 35) — dlm( V(/\2 — 5)2/\0_35).

Evan A. Wilson



Consider the root o = —2a_1 — 34.
N—N_qif1<i<ni#2n-1,
Let/\,-: /\2*/\0*/\1”/.:2,
An_o — Np_1q —Npifi=n—-1.
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Consider the root o = —2a_1 — 34.
N—N_qif1<i<ni#2n-1,
Let/\,-: /\2*/\0*/\1”/.:2,
An_o — Np_1q —Npifi=n—-1.

| A | dim(V(Ag)») | dim(V(Ag)a—y) | Count |
Ao 1 n(n+1g(n+8) 1
NoEXNEN—6,i<] 1 n -
Ao — & n n(nt3) 1

We have: X(2M\o — 36) = n(n+16)(n+8) . n2(5£1—1).

Evan A. Wilson
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n?(5n—1)

dim(V(A2)an,—25) = 5
Therefore,

mult(—2a_1 — 35) = X(2/\0 — 35) —dim V(/\g — (5)2/\0_3(;)7
n(n+1)(n+8) N "(Bn—1)  nP(n-1)

2 2 ’

6
n(n+1)(n+8)
5 .

Evan A. Wilson
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Let o be a root of HDS) of degree 2. Then mult(«) depends
onlyoni — “‘“Zﬁ

If true, then the following is a generating series for the root

multiplicities:
> f(k)gk = <Z p4(k)qk> (1-3¢%+7q'°-15¢'2+30q"* -
k=0 k=0

Evan A. Wilson
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Summary

Possible future work

@ Further areas to explore:
o Proving the conjecture of polynomial behavior of root

multiplicities for HDf,” of fixed degree k.
o Proving Frankel's conjectured bound on the root
multiplicities.

Evan A. Wilson
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