Introduction
Construction of $HD_n^{(1)}$ from $D_n^{(1)}$ Crystals of Affine Kac-Moody Algebras
Root Multiplicities of $HD_n^{(1)}$ Summary
References

Root Multiplicities of the Kac-Moody Algebra $HD_n^{(1)}$

Evan A. Wilson

IME-USP Joint with: Kailash C. Misra

March 23, 2013

Outline

- Introduction
- 2 Construction of $HD_n^{(1)}$ from $D_n^{(1)}$
- 3 Crystals of Affine Kac-Moody Algebras
- Root Multiplicities of HD_n⁽¹⁾

- on finite,
- affine,
- indefinite.

- finite,
- affine,
- indefinite.

- finite,
- affine,
- indefinite.

- finite,
- affine,
- o indefinite.

Construction of $HD_n^{(1)}$ from $D_n^{(1)}$ from $D_n^{(1)}$ Crystals of Affine Kac-Moody Algebras Root Multiplicities of $HD_n^{(1)}$ Summary

Some Motivation

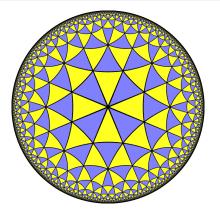


Figure: Example of a hyperbolic tesselation.

Root Multiplicities

An element $\alpha \in \mathfrak{h}^*$, is called a root of \mathfrak{g} if $\alpha \neq 0$ and $\{0\} \neq \mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} | [h, x] = \alpha(h)x, h \in \mathfrak{h}\}.$

A fundamental problem in the study of Kac-Moody algebras is to determine the root multiplicities, i.e. the dimension of the root spaces g_{α} .

These are known to be 1 for finite type, and affine type root multiplicities are also all known.

Root Multiplicities

An element $\alpha \in \mathfrak{h}^*$, is called a root of \mathfrak{g} if $\alpha \neq 0$ and $\{0\} \neq \mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} | [h, x] = \alpha(h)x, h \in \mathfrak{h}\}.$

A fundamental problem in the study of Kac-Moody algebras is to determine the root multiplicities, i.e. the dimension of the root spaces \mathfrak{g}_{α} .

These are known to be 1 for finite type, and affine type root multiplicities are also all known.

Root Multiplicities

An element $\alpha \in \mathfrak{h}^*$, is called a root of \mathfrak{g} if $\alpha \neq 0$ and $\{0\} \neq \mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} | [h, x] = \alpha(h)x, h \in \mathfrak{h}\}.$

A fundamental problem in the study of Kac-Moody algebras is to determine the root multiplicities, i.e. the dimension of the root spaces \mathfrak{g}_{α} .

These are known to be 1 for finite type, and affine type root multiplicities are also all known.

- HA₁⁽¹⁾ (Feingold and Frankel, 1983)
- (2) $HA_n^{(1)}$ (Kang and Melville, 1994),
- © $E_{10} = HE_8^{(1)}$ (Kac, Moody, Wakimoto, 1998), $HG_2^{(1)}$ and $HD_4^{(3)}$ (Hontz and Misra, 2002), and
- \bullet $HC_n^{(1)}$ (Klima and Misra, 2002).

- HA₁⁽¹⁾ (Feingold and Frankel, 1983)
- (2) $HA_n^{(1)}$ (Kang and Melville, 1994),
- **Solution** $E_{10} = HE_8^{(1)}$ (Kac, Moody, Wakimoto, 1998), $HG_2^{(1)}$ and $HD_4^{(3)}$ (Hontz and Misra, 2002), and
- \bigcirc $HC_n^{(1)}$ (Klima and Misra, 2002).

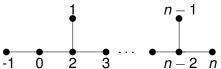
- HA₁⁽¹⁾ (Feingold and Frankel, 1983)
- \bigcirc $HA_n^{(1)}$ (Kang and Melville, 1994),
- **Solution** $E_{10} = HE_8^{(1)}$ (Kac, Moody, Wakimoto, 1998), $HG_2^{(1)}$ and $HD_4^{(3)}$ (Hontz and Misra, 2002), and
- \bigcirc $HC_n^{(1)}$ (Klima and Misra, 2002).

- HA₁⁽¹⁾ (Feingold and Frankel, 1983)
- \bullet $HA_n^{(1)}$ (Kang and Melville, 1994),
- $E_{10} = HE_8^{(1)}$ (Kac, Moody, Wakimoto, 1998), $HG_2^{(1)}$ and $HD_4^{(3)}$ (Hontz and Misra, 2002), and
- \bullet $HC_n^{(1)}$ (Klima and Misra, 2002).

- HA₁⁽¹⁾ (Feingold and Frankel, 1983)
- Θ $HA_n^{(1)}$ (Kang and Melville, 1994),
- $E_{10} = HE_8^{(1)}$ (Kac, Moody, Wakimoto, 1998), $HG_2^{(1)}$ and $HD_4^{(3)}$ (Hontz and Misra, 2002), and
- \bigcirc $HC_n^{(1)}$ (Klima and Misra, 2002).

Introducing $HD_n^{(1)}$

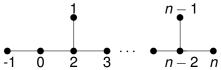
Consider the Kac-Moody algebra $HD_n^{(1)}$ with Dynkin diagram given below:



It is an indefinite Kac-Moody algebra containing the affine Kac-Moody algebra $D_n^{(1)}$. There is a construction of $HD_n^{(1)}$ in terms of $D_n^{(1)}$ -modules.

Introducing $HD_n^{(1)}$

Consider the Kac-Moody algebra $HD_n^{(1)}$ with Dynkin diagram given below:



It is an indefinite Kac-Moody algebra containing the affine Kac-Moody algebra $D_n^{(1)}$. There is a construction of $HD_n^{(1)}$ in terms of $D_n^{(1)}$ -modules.

- The Lie algebra $g_0 := D_n^{(1)}$.
- The \mathfrak{g}_0 -modules $V(\Lambda_0)$ and $V^*(\Lambda_0)$.
- A \mathfrak{g}_0 -module homomorphism $\psi: V^*(\Lambda_0) \otimes V(\Lambda_0) \to \mathfrak{g}_0$.

- The Lie algebra $\mathfrak{g}_0 := D_n^{(1)}$.
- The \mathfrak{g}_0 -modules $V(\Lambda_0)$ and $V^*(\Lambda_0)$.
- A \mathfrak{g}_0 -module homomorphism $\psi:V^*(\Lambda_0)\otimes V(\Lambda_0)\to \mathfrak{g}_0$.

- The Lie algebra $\mathfrak{g}_0 := D_n^{(1)}$.
- The \mathfrak{g}_0 -modules $V(\Lambda_0)$ and $V^*(\Lambda_0)$.
- A \mathfrak{g}_0 -module homomorphism $\psi:V^*(\Lambda_0)\otimes V(\Lambda_0)\to \mathfrak{g}_0$

- The Lie algebra $\mathfrak{g}_0 := D_n^{(1)}$.
- The \mathfrak{g}_0 -modules $V(\Lambda_0)$ and $V^*(\Lambda_0)$.
- A \mathfrak{g}_0 -module homomorphism $\psi: V^*(\Lambda_0) \otimes V(\Lambda_0) \to \mathfrak{g}_0$.

The \mathfrak{g}_0 -module homomorphism.

Theorem ([Benkart Kang Misra 93])

The map

$$\psi: V^*(\Lambda_0) \otimes V(\Lambda_0) \to \mathfrak{g}_0$$

given by

$$v^* \otimes w \mapsto -\sum_{i \in \mathcal{T}} \langle v^*, x_i \cdot w \rangle x_i - 2 \langle v^*, w \rangle c$$

is a \mathfrak{g}_0 -module homomorphism, where \mathfrak{g}_0 is considered as a module under the adjoint action.

The Lie Algebra $\tilde{\mathfrak{g}}$.

Now, let $\tilde{\mathfrak{g}}_1 := V(\Lambda_0)$, $\tilde{\mathfrak{g}}_{-1} := V^*(\Lambda_0)$, $\tilde{\mathfrak{g}}_{-}$ and $\tilde{\mathfrak{g}}_{+}$ be the free Lie algebras generated by $\tilde{\mathfrak{g}}_{-1}$ and $\tilde{\mathfrak{g}}_{1}$ respectively. Let $\tilde{\mathfrak{g}}_{\pm i} = \operatorname{span}\{[y_1, [y_2, [\ldots, [y_{i-1}, y_i] \ldots]]] | y_1, y_2, \ldots, y_i \in \tilde{\mathfrak{g}}_{\pm 1}\}.$

Theorem ([Benkart Kang Misra 93])

The vector space $\tilde{\mathfrak{g}} := \tilde{\mathfrak{g}}_- \oplus \mathfrak{g}_0 \oplus \tilde{\mathfrak{g}}_+$ is a graded Lie algebra with bracket given by extending the following:

$$[v^*, w] = \psi(v^* \otimes w)$$

The Lie Algebra §.

Now, let $\tilde{\mathfrak{g}}_1 := V(\Lambda_0)$, $\tilde{\mathfrak{g}}_{-1} := V^*(\Lambda_0)$, $\tilde{\mathfrak{g}}_{-}$ and $\tilde{\mathfrak{g}}_{+}$ be the free Lie algebras generated by $\tilde{\mathfrak{g}}_{-1}$ and $\tilde{\mathfrak{g}}_{1}$ respectively. Let $\tilde{\mathfrak{g}}_{\pm i} = \operatorname{span}\{[y_1, [y_2, [\ldots, [y_{i-1}, y_i] \ldots]]] | y_1, y_2, \ldots, y_i \in \tilde{\mathfrak{g}}_{\pm 1}\}.$

Theorem ([Benkart Kang Misra 93])

The vector space $\tilde{\mathfrak{g}}:=\tilde{\mathfrak{g}}_-\oplus\mathfrak{g}_0\oplus\tilde{\mathfrak{g}}_+$ is a graded Lie algebra with bracket given by extending the following:

$$[\mathbf{v}^*,\mathbf{w}]=\psi(\mathbf{v}^*\otimes\mathbf{w}).$$

The Ideal J.

Let
$$J_{\pm k} := \{x \in \tilde{\mathfrak{g}}_k | [y_1, [y_2, \dots, [y_{k-1}, x] \dots]] = 0, \forall y_1, y_2, \dots, y_{k-1} \in \tilde{\mathfrak{g}}_{\pm 1} \}$$
. Let $J_{\pm} := \bigoplus_{k>1} J_{\pm k}$ and $J := J_{+} \oplus J_{-}$.

Theorem ([Benkart Kang Misra 93])

 J_+ and J_- are ideals of $\tilde{\mathfrak{g}}$, and J is the maximal graded ideal that intersects $\tilde{\mathfrak{g}}_{-1}\oplus \mathfrak{g}_0\oplus \tilde{\mathfrak{g}}_1$ trivially.

Theorem ([Benkart Kang Misra 93])

Let g(A) be the Kac-Moody algebra with GCM A, and let g_0 be a subalgebra of g(A). Then g(A) is isomorphic to \tilde{g}/J .

The Ideal J.

Let
$$J_{\pm k} := \{x \in \tilde{\mathfrak{g}}_k | [y_1, [y_2, \dots, [y_{k-1}, x] \dots]] = 0, \forall y_1, y_2, \dots, y_{k-1} \in \tilde{\mathfrak{g}}_{\pm 1} \}$$
. Let $J_{\pm} := \bigoplus_{k>1} J_{\pm k}$ and $J := J_{+} \oplus J_{-}$.

Theorem ([Benkart Kang Misra 93])

 J_+ and J_- are ideals of $\tilde{\mathfrak{g}}$, and J is the maximal graded ideal that intersects $\tilde{\mathfrak{g}}_{-1} \oplus \mathfrak{g}_0 \oplus \tilde{\mathfrak{g}}_1$ trivially.

Theorem ([Benkart Kang Misra 93])

Let $\mathfrak{g}(A)$ be the Kac-Moody algebra with GCM A, and let \mathfrak{g}_0 be a subalgebra of $\mathfrak{g}(A)$. Then $\mathfrak{g}(A)$ is isomorphic to $\tilde{\mathfrak{g}}/J$.

The Ideal J.

Let
$$J_{\pm k} := \{x \in \tilde{\mathfrak{g}}_k | [y_1, [y_2, \dots, [y_{k-1}, x] \dots]] = 0, \forall y_1, y_2, \dots, y_{k-1} \in \tilde{\mathfrak{g}}_{\pm 1} \}$$
. Let $J_{\pm} := \bigoplus_{k>1} J_{\pm k}$ and $J := J_{+} \oplus J_{-}$.

Theorem ([Benkart Kang Misra 93])

 J_+ and J_- are ideals of $\tilde{\mathfrak{g}}$, and J is the maximal graded ideal that intersects $\tilde{\mathfrak{g}}_{-1} \oplus \mathfrak{g}_0 \oplus \tilde{\mathfrak{g}}_1$ trivially.

Theorem ([Benkart Kang Misra 93])

Let g(A) be the Kac-Moody algebra with GCM A, and let g_0 be a subalgebra of g(A). Then g(A) is isomorphic to \tilde{g}/J .

By Kostant's theorem for Lie algebra cohomology and the Euler-Poincaré principle:

$$\prod_{\alpha \in \Delta^{-}(S)} (1 - e(\alpha))^{\dim(\mathfrak{g}_{\alpha})} = 1 - \sum_{\substack{w \in W(S) \\ \ell(w) \geq 1}} (-1)^{\ell(w)+1} \operatorname{ch}(V(w(\rho) - \rho))$$

- $S = \{0, 1, ..., n\}$: The index set of simple roots of $g_0 = D_n^{(1)}$.
- Δ_S : The set of roots of \mathfrak{g}_0
- Δ_S^{\pm} : The set of positive (resp. negative) roots of \mathfrak{g}_0 .
- $\Delta^{\pm}(S): \Delta^{\pm}\backslash \Delta_{S}^{\pm}$
- W(S): $\{w \in \widetilde{W} | w\Delta^- \cap \Delta^+ \subseteq \Delta^+(S)\}$

By Kostant's theorem for Lie algebra cohomology and the Euler-Poincaré principle:

$$\prod_{\alpha \in \Delta^{-}(S)} (1 - e(\alpha))^{\mathsf{dim}(\mathfrak{g}_{\alpha})} = 1 - \sum_{\substack{w \in W(S) \\ \ell(w) \geq 1}} (-1)^{\ell(w) + 1} \mathsf{ch}(V(w(\rho) - \rho))$$

- $S = \{0, 1, ..., n\}$: The index set of simple roots of $\mathfrak{g}_0 = \mathcal{D}_n^{(1)}$.
- Δ_S : The set of roots of \mathfrak{g}_0
- Δ_S^{\pm} : The set of positive (resp. negative) roots of \mathfrak{g}_0 .
- $\bullet \Delta^{\pm}(S) : \Delta^{\pm} \backslash \Delta_{S}^{\pm}$
- $W(S): \{w \in \widetilde{W} | w\Delta^- \cap \Delta^+ \subseteq \Delta^+(S)\}$

By Kostant's theorem for Lie algebra cohomology and the Euler-Poincaré principle:

$$\prod_{\alpha \in \Delta^{-}(S)} (1 - e(\alpha))^{\dim(\mathfrak{g}_{\alpha})} = 1 - \sum_{\substack{w \in W(S) \\ \ell(w) \geq 1}} (-1)^{\ell(w)+1} \operatorname{ch}(V(w(\rho) - \rho))$$

- $S = \{0, 1, ..., n\}$: The index set of simple roots of $\mathfrak{g}_0 = D_n^{(1)}$.
- Δ_S : The set of roots of \mathfrak{g}_0 .
- Δ_S^{\pm} : The set of positive (resp. negative) roots of \mathfrak{g}_0 .
- $\bullet \Delta^{\pm}(S) : \Delta^{\pm} \backslash \Delta_{S}^{\pm}$
- W(S): $\{w \in \widetilde{W} | w\Delta^- \cap \Delta^+ \subseteq \Delta^+(S)\}$

By Kostant's theorem for Lie algebra cohomology and the Euler-Poincaré principle:

$$\prod_{\alpha \in \Delta^{-}(S)} (1 - e(\alpha))^{\dim(\mathfrak{g}_{\alpha})} = 1 - \sum_{\substack{w \in W(S) \\ \ell(w) \geq 1}} (-1)^{\ell(w)+1} \operatorname{ch}(V(w(\rho) - \rho))$$

- $S = \{0, 1, ..., n\}$: The index set of simple roots of $\mathfrak{g}_0 = D_n^{(1)}$.
- Δ_S : The set of roots of \mathfrak{g}_0 .
- Δ_S^{\pm} : The set of positive (resp. negative) roots of \mathfrak{g}_0 .
- $\bullet \Delta^{\pm}(S) : \Delta^{\pm} \backslash \Delta_{S}^{\pm}$
- $\bullet \ W(S): \{w \in W | w\Delta^- \cap \Delta^+ \subseteq \Delta^+(S)\}.$

By Kostant's theorem for Lie algebra cohomology and the Euler-Poincaré principle:

$$\prod_{\alpha \in \Delta^{-}(S)} (1 - e(\alpha))^{\dim(\mathfrak{g}_{\alpha})} = 1 - \sum_{\substack{w \in W(S) \\ \ell(w) \geq 1}} (-1)^{\ell(w)+1} \operatorname{ch}(V(w(\rho) - \rho))$$

- $S = \{0, 1, ..., n\}$: The index set of simple roots of $\mathfrak{g}_0 = D_n^{(1)}$.
- Δ_S : The set of roots of \mathfrak{g}_0 .
- Δ_S^{\pm} : The set of positive (resp. negative) roots of \mathfrak{g}_0 .
- $\bullet \ \Delta^{\pm}(S) : \Delta^{\pm} \backslash \Delta_{S}^{\pm}.$
- $W(S): \{w \in W | w\Delta^- \cap \Delta^+ \subseteq \Delta^+(S)\}$

By Kostant's theorem for Lie algebra cohomology and the Euler-Poincaré principle:

$$\prod_{\alpha \in \Delta^{-}(S)} (1 - e(\alpha))^{\dim(\mathfrak{g}_{\alpha})} = 1 - \sum_{\substack{w \in W(S) \\ \ell(w) \geq 1}} (-1)^{\ell(w)+1} \operatorname{ch}(V(w(\rho) - \rho))$$

- $S = \{0, 1, ..., n\}$: The index set of simple roots of $\mathfrak{g}_0 = D_n^{(1)}$.
- Δ_S : The set of roots of \mathfrak{g}_0 .
- Δ_S^{\pm} : The set of positive (resp. negative) roots of \mathfrak{g}_0 .
- $\bullet \ \Delta^{\pm}(S) : \Delta^{\pm} \backslash \Delta_{S}^{\pm}.$
- W(S): $\{w \in W | w\Delta^- \cap \Delta^+ \subseteq \Delta^+(S)\}$.

Perfect Crystals

Definition (Perfect Crystal)

For a positive integer l > 0, we say that a finite classical crystal \mathcal{B} is a *perfect crystal of level l* if it satisfies the following conditions:

- there exists a finite dimensional $U'_q(\mathfrak{g})$ -module with a crystal base whose crystal graph is isomorphic to \mathcal{B} ,
- ② $\mathcal{B} \otimes \mathcal{B}$ is connected,
- ① there exists a classical weight $\lambda_0 \in \bar{P}$ such that $\operatorname{wt}(\mathcal{B}) \subset \lambda_0 + \sum_{i \neq 0} \mathbb{Z}_{\leq 0} \alpha_i$, and $\#(\mathcal{B}_{\lambda_0}) = 1$,

Perfect Crystals

Definition (Perfect Crystal)

For a positive integer l > 0, we say that a finite classical crystal \mathcal{B} is a *perfect crystal of level l* if it satisfies the following conditions:

- there exists a finite dimensional $U'_q(\mathfrak{g})$ -module with a crystal base whose crystal graph is isomorphic to \mathcal{B} ,
- ② $\mathcal{B} \otimes \mathcal{B}$ is connected.
- ① there exists a classical weight $\lambda_0 \in \bar{P}$ such that $\operatorname{wt}(\mathcal{B}) \subset \lambda_0 + \sum_{i \neq 0} \mathbb{Z}_{\leq 0} \alpha_i$, and $\#(\mathcal{B}_{\lambda_0}) = 1$,

Perfect Crystals

Definition (Perfect Crystal)

For a positive integer l > 0, we say that a finite classical crystal \mathcal{B} is a *perfect crystal of level l* if it satisfies the following conditions:

- there exists a finite dimensional $U_q'(\mathfrak{g})$ -module with a crystal base whose crystal graph is isomorphic to \mathcal{B} ,
- \bigcirc $\mathcal{B} \otimes \mathcal{B}$ is connected,
- ① there exists a classical weight $\lambda_0 \in \bar{P}$ such that $\operatorname{wt}(\mathcal{B}) \subset \lambda_0 + \sum_{i \neq 0} \mathbb{Z}_{\leq 0} \alpha_i$, and $\#(\mathcal{B}_{\lambda_0}) = 1$,

Perfect Crystals

Definition (Perfect Crystal)

For a positive integer l > 0, we say that a finite classical crystal \mathcal{B} is a *perfect crystal of level l* if it satisfies the following conditions:

- there exists a finite dimensional $U_q(\mathfrak{g})$ -module with a crystal base whose crystal graph is isomorphic to \mathcal{B} ,
- ② $\mathcal{B} \otimes \mathcal{B}$ is connected,
- there exists a classical weight $\lambda_0 \in \bar{P}$ such that $\operatorname{wt}(\mathcal{B}) \subset \lambda_0 + \sum_{i \neq 0} \mathbb{Z}_{\leq 0} \alpha_i$, and $\#(\mathcal{B}_{\lambda_0}) = 1$,

Perfect Crystal (cont.)

Definition (Perfect Crystal (cont.))

- for any $b \in \mathcal{B}$, we have $\langle c, \varepsilon(b) \rangle \geq I$,
- for each $\lambda \in \bar{P}_l$ there exist unique $b^{\lambda} \in \mathcal{B}$ and $b_{\lambda} \in \mathcal{B}$ such that $\varepsilon(b^{\lambda}) = \lambda$, $\varphi(b_{\lambda}) = \lambda$,

where
$$\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b) \Lambda_i$$
, $\varphi(b) = \sum_{i \in I} \varphi_i(b) \Lambda_i$, and $\bar{P}_I = \{\lambda \in \bar{P}^+ | \langle c, \lambda \rangle = I \}$.

Perfect Crystal (cont.)

Definition (Perfect Crystal (cont.))

- for any $b \in \mathcal{B}$, we have $\langle c, \varepsilon(b) \rangle \geq I$,
- of for each $\lambda \in \overline{P}_l$ there exist unique $b^{\lambda} \in \mathcal{B}$ and $b_{\lambda} \in \mathcal{B}$ such that $\varepsilon(b^{\lambda}) = \lambda$, $\varphi(b_{\lambda}) = \lambda$,

where $\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b) \Lambda_i$, $\varphi(b) = \sum_{i \in I} \varphi_i(b) \Lambda_i$, and $\bar{P}_I = \{\lambda \in \bar{P}^+ | \langle c, \lambda \rangle = I \}$.

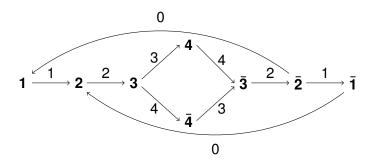
Perfect Crystal (cont.)

Definition (Perfect Crystal (cont.))

- for any $b \in \mathcal{B}$, we have $\langle c, \varepsilon(b) \rangle \geq I$,
- of for each $\lambda \in \bar{P}_l$ there exist unique $b^{\lambda} \in \mathcal{B}$ and $b_{\lambda} \in \mathcal{B}$ such that $\varepsilon(b^{\lambda}) = \lambda$, $\varphi(b_{\lambda}) = \lambda$,

where
$$\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b) \Lambda_i$$
, $\varphi(b) = \sum_{i \in I} \varphi_i(b) \Lambda_i$, and $\bar{P}_I = \{\lambda \in \bar{P}^+ | \langle c, \lambda \rangle = I \}$.

Example: level 1 perfect crystal for $D_4^{(1)}$



Affine Crystals

Theorem ([KKMMNN 92])

Fix a positive integer I>0 and let $\mathcal B$ be a perfect crystal of level I. For any classical dominant weight $\lambda\in \overline{P}_I^+$, there exists a unique crystal isomorphism

$$\Psi: \mathcal{B}(\lambda) o \mathcal{B}(arepsilon(oldsymbol{b}_{\lambda})) \otimes \mathcal{B}$$

given by $u_{\lambda} \mapsto u_{\varepsilon(b_{\lambda})} \otimes b_{\lambda}$, where b_{λ} is the unique element in \mathcal{B} such that $\varphi(b_{\lambda}) = \lambda$.

Path Model (cont.)

Set
$$\lambda_0 = \lambda$$
, $\lambda_{k+1} = \varepsilon(\lambda_k)$, $b_0 = b_\lambda$, $b_{k+1} = b_{\lambda_{k+1}}$. The sequences

$$\mathbf{w}_{\lambda} := (\lambda_k)_{k=0}^{\infty}, \mathbf{b}_{\lambda} := (b_k)_{k=0}^{\infty},$$

are periodic with the same period N.

Definition

- The sequence \mathbf{b}_{λ} is called the *ground-state path* of weight λ .
- ② A λ -path in \mathcal{B} is a sequence $\mathbf{p} = (p_k)_{k=0}^{\infty}$ with $p_k = b_k$ for all $k \gg 0$.

Path Model (cont.)

Set
$$\lambda_0 = \lambda$$
, $\lambda_{k+1} = \varepsilon(\lambda_k)$, $b_0 = b_\lambda$, $b_{k+1} = b_{\lambda_{k+1}}$. The sequences

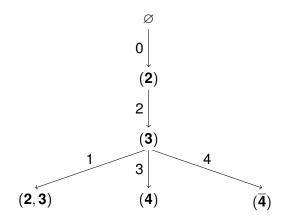
$$\mathbf{w}_{\lambda} := (\lambda_k)_{k=0}^{\infty}, \mathbf{b}_{\lambda} := (b_k)_{k=0}^{\infty},$$

are periodic with the same period N.

Definition

- The sequence \mathbf{b}_{λ} is called the *ground-state path* of weight λ .
- ② A λ -path in \mathcal{B} is a sequence $\mathbf{p} = (p_k)_{k=0}^{\infty}$ with $p_k = b_k$ for all $k \gg 0$.

Example: top part of $\mathcal{B}(\Lambda_0)$ for $D_4^{(1)}$



- The *degree* of a root $\alpha = -\sum_{i=-1}^{n} a_i \alpha_i$ is defined to be a_{-1} and is denoted $deg(\alpha)$.
- Consider the element $-l\alpha_{-1} k\delta \in Q^-$, where $\delta = \alpha_0 + \alpha_1 + 2\sum_{i=2}^{n-2} \alpha_i + \alpha_{n-1} + \alpha_n$. Then we have the following:

Theorem ([Klima Misra 08] for $C_n^{(1)}$, analogous proof)

 $\alpha = -l\alpha_{-1} - k\delta$ is a root of $HD_n^{(1)}$ only if $k \ge l$. If l = k then $mult(\alpha) = n$.

- The *degree* of a root $\alpha = -\sum_{i=-1}^{n} a_i \alpha_i$ is defined to be a_{-1} and is denoted $deg(\alpha)$.
- Consider the element $-l\alpha_{-1} k\delta \in Q^-$, where $\delta = \alpha_0 + \alpha_1 + 2\sum_{i=2}^{n-2} \alpha_i + \alpha_{n-1} + \alpha_n$. Then we have the following:

Theorem ([Klima Misra 08] for $C_0^{(1)}$, analogous proof

 $\alpha = -l\alpha_{-1} - k\delta$ is a root of $HD_n^{(1)}$ only if $k \ge l$. If l = k then $mult(\alpha) = n$.

- The *degree* of a root $\alpha = -\sum_{i=-1}^{n} a_i \alpha_i$ is defined to be a_{-1} and is denoted $deg(\alpha)$.
- Consider the element $-l\alpha_{-1} k\delta \in Q^-$, where $\delta = \alpha_0 + \alpha_1 + 2\sum_{i=2}^{n-2} \alpha_i + \alpha_{n-1} + \alpha_n$. Then we have the following:

Theorem ([Klima Misra 08] for $C_n^{(1)}$, analogous proof)

 $\alpha = -l\alpha_{-1} - k\delta$ is a root of $HD_n^{(1)}$ only if $k \ge l$. If l = k then $mult(\alpha) = n$.

- The *degree* of a root $\alpha = -\sum_{i=-1}^{n} a_i \alpha_i$ is defined to be a_{-1} and is denoted $deg(\alpha)$.
- Consider the element $-l\alpha_{-1} k\delta \in Q^-$, where $\delta = \alpha_0 + \alpha_1 + 2\sum_{i=2}^{n-2} \alpha_i + \alpha_{n-1} + \alpha_n$. Then we have the following:

Theorem ([Klima Misra 08] for $C_n^{(1)}$, analogous proof)

 $\alpha = -I\alpha_{-1} - k\delta$ is a root of $HD_n^{(1)}$ only if $k \ge I$. If I = k then $mult(\alpha) = n$.

A Lemma on W(S).

Here are the elements of W(S) of length 1 and 2:

$\ell(\omega)$		$\omega \rho - \rho$	level
1	r_1	$-\alpha_{-1} = \Lambda_0$	1
2	$r_{-1}r_{0}$	$-2\alpha_{-1}-\alpha_0=\Lambda_2-\delta$	2

A Lemma on W(S).

Here are the elements of W(S) of length 1 and 2:

$\ell(\omega)$	ω	$\omega \rho - \rho$	level
1	<i>r</i> _1	$-\alpha_{-1} = \Lambda_0$	1
2	$r_{-1}r_{0}$	$-2\alpha_{-1}-\alpha_0=\Lambda_2-\delta$	2

Roots of degree 1

If $\alpha = -\alpha_{-1} - k\delta$ then $\operatorname{mult}(\alpha) = \dim(V(\Lambda_0)_{\alpha})$. These are given for $D_n^{(1)}$ by the following generating series:

$$\sum_{k=0}^{\infty} \dim(V(\Lambda_0)_{\Lambda_0 - k\delta}) q^k = \prod_{i=1}^{\infty} (1 - q^i)^{-n}.$$

Using the binomial expansion $(1 - q^i)^{-n} = \sum_{j=0}^{\infty} {\binom{-n}{j}} q^{ij}$, we can in principle compute the multiplicity of α for any k. In particular, we see that it is a polynomial in n of degree k.

Roots of degree 1

If $\alpha = -\alpha_{-1} - k\delta$ then $\operatorname{mult}(\alpha) = \dim(V(\Lambda_0)_{\alpha})$. These are given for $D_n^{(1)}$ by the following generating series:

$$\sum_{k=0}^{\infty} \dim(V(\Lambda_0)_{\Lambda_0 - k\delta}) q^k = \prod_{i=1}^{\infty} (1 - q^i)^{-n}.$$

Using the binomial expansion $(1-q^i)^{-n} = \sum_{j=0}^{\infty} {-n \choose j} q^{ij}$, we can in principle compute the multiplicity of α for any k. In particular, we see that it is a polynomial in n of degree k.

Construction of $HD_n^{(1)}$ from $D_n^{(1)}$ Crystals of Affine Kac-Moody Algebras

Root Multiplicities of $HD_n^{(1)}$ Summary
References

The first few multiplicity polynomials are given in the following table:

Root	Multiplicity
$-\alpha_{-1} - \delta$	n
$-\alpha_{-1}-2\delta$	$\frac{n(n+3)}{2}$
$-\alpha_{-1}-3\delta$	$\frac{n(n+1)(n+8)}{6}$
$-\alpha_{-1}-4\delta$	$\frac{n(n+1)(n+3)(n+14)}{24}$
$-\alpha_{-1}-5\delta$	$\frac{n(n+3)(n+6)(n^2+21n+8)}{120}$

Degree 2 Roots

For $\tau \in P_2^+$ let

$$X(\tau) = \sum_{\lambda < \tau} \dim(V(\Lambda_0)_{\lambda}) \dim(V(\Lambda_0)_{\tau - \lambda}).$$

Then Kang's formula gives:

$$\operatorname{mult}(-2\alpha_{-1} - 3\delta) = X(2\Lambda_0 - 3\delta) - \dim(V(\Lambda_2 - \delta)_{2\Lambda_0 - 3\delta})$$

Degree 2 Roots

For $\tau \in P_2^+$ let

$$X(\tau) = \sum_{\lambda < \tau} \dim(V(\Lambda_0)_{\lambda}) \dim(V(\Lambda_0)_{\tau - \lambda}).$$

Then Kang's formula gives:

$$\mathsf{mult}(-2\alpha_{-1}-3\delta)=X(2\Lambda_0-3\delta)-\mathsf{dim}(V(\Lambda_2-\delta)_{2\Lambda_0-3\delta}).$$

Consider the root
$$\alpha = -2\alpha_{-1} - 3\delta$$
.
Let $\lambda_i = \begin{cases} \lambda_i - \lambda_{i-1} \text{ if } 1 \leq i \leq n, i \neq 2, n-1, \\ \lambda_2 - \lambda_0 - \lambda_1 \text{ if } i = 2, \\ \lambda_{n-2} - \lambda_{n-1} - \lambda_n \text{ if } i = n-1. \end{cases}$

λ	$\dim(V(\Lambda_0)_{\lambda})$	$\dim(V(\Lambda_0)_{\alpha-\lambda})$	Count
Λ_0	1	$\frac{n(n+1)(n+8)}{6}$	1
$\Lambda_0 \pm \lambda_i \pm \lambda_j - \delta, i < j$	1	n	$\frac{4n(n-1)}{2}$
$\Lambda_0 - \delta$	n		1

We have:
$$X(2\Lambda_0 - 3\delta) = \frac{n(n+1)(n+8)}{6} + \frac{n^2(5n-1)}{2}$$
.

Consider the root
$$\alpha = -2\alpha_{-1} - 3\delta$$
.
Let $\lambda_i = \begin{cases} \lambda_i - \lambda_{i-1} \text{ if } 1 \leq i \leq n, i \neq 2, n-1, \\ \lambda_2 - \lambda_0 - \lambda_1 \text{ if } i = 2, \\ \lambda_{n-2} - \lambda_{n-1} - \lambda_n \text{ if } i = n-1. \end{cases}$

λ	$\dim(V(\Lambda_0)_{\lambda})$	$\dim(V(\Lambda_0)_{\alpha-\lambda})$	Count
Λ_0	1	$\frac{n(n+1)(n+8)}{6}$	1
$\Lambda_0 \pm \lambda_i \pm \lambda_j - \delta, i < j$	1	n	$\frac{4n(n-1)}{2}$
$\Lambda_0 - \delta$	n	$\frac{n(n+3)}{2}$	1

We have:
$$X(2\Lambda_0 - 3\delta) = \frac{n(n+1)(n+8)}{6} + \frac{n^2(5n-1)}{2}$$
.

Theorem (Misra, W., 2012)

$$dim(V(\Lambda_2)_{2\Lambda_0-2\delta}) = \frac{n^2(5n-1)}{2}$$

Therefore,

Theorem (Misra, W., 2012)

$$dim(V(\Lambda_2)_{2\Lambda_0-2\delta}) = \frac{n^2(5n-1)}{2}$$

Therefore,

$$\begin{split} \text{mult}(-2\alpha_{-1} - 3\delta) &= X(2\Lambda_0 - 3\delta) - \dim(V(\Lambda_2 - \delta)_{2\Lambda_0 - 3\delta}), \\ &= \frac{n(n+1)(n+8)}{6} + \frac{n^2(5n-1)}{2} - \frac{n^2(5n-1)}{2}, \\ &= \frac{n(n+1)(n+8)}{6}. \end{split}$$

Conjecture (Misra, W.)

Let α be a root of HD₄⁽¹⁾ of degree 2. Then mult(α) depends only on 1 $-\frac{(\alpha|\alpha)}{2}$

If true, then the following is a generating series for the root multiplicities:

$$\sum_{k=0}^{\infty} f(k)q^k = \left(\sum_{k=0}^{\infty} p^4(k)q^k\right) (1 - 3q^8 + 7q^{10} - 15q^{12} + 30q^{14} - \dots)$$

Conjecture (Misra, W.)

Let α be a root of HD₄⁽¹⁾ of degree 2. Then mult(α) depends only on 1 $-\frac{(\alpha|\alpha)}{2}$

If true, then the following is a generating series for the root multiplicities:

$$\sum_{k=0}^{\infty} f(k)q^k = \left(\sum_{k=0}^{\infty} p^4(k)q^k\right) (1 - 3q^8 + 7q^{10} - 15q^{12} + 30q^{14} - \cdots)$$

Possible future work

Further areas to explore:

- Proving the conjecture of polynomial behavior of root multiplicities for $HD_n^{(1)}$ of fixed degree k.
- Proving Frankel's conjectured bound on the root multiplicities.

Possible future work

- Further areas to explore:
 - Proving the conjecture of polynomial behavior of root multiplicities for $HD_n^{(1)}$ of fixed degree k.
 - Proving Frankel's conjectured bound on the root multiplicities.

Possible future work

- Further areas to explore:
 - Proving the conjecture of polynomial behavior of root multiplicities for HD_n⁽¹⁾ of fixed degree k.
 - Proving Frankel's conjectured bound on the root multiplicities.

References

- Benkart G., Kang, S.-J., Misra, K. C., *Graded Lie Algebras of Kac-Moody Type*, Adv. Math. **97** (1993), no. 2, 154–190.
- Feingold, A. J., Frenkel, I. B., A Hyperbolic Kac-Moody Algebra and the Theory of Siegel Modular Forms of Genus 2, Math. Ann. **263** (1983), no. 1, 87–144.
- Kang, S.-J., *Kac-Moody Lie Algebras, Spectral Sequences, and the Witt Formula*, Trans. Amer. Math. Soc. **339** (1993), no. 2, 463–495.
- Root Multiplicities of Kac-Moody Algebras, Duke Math. J. **74** (1994), no. 3, 635–666.

- Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T., Nakayashiki, A., *Affine Crystals and Vertex Models*, Int. J. Mod. Phys. **7** (suppl. 1A) (1992), 449–484.
- Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T., Nakayashiki, A.: Perfect crystals of quantum affine Lie algebras, *Duke Math. J.* **68**(3): 499–607, 1992.
- Kang, S.-J., Kashiwara, M., Misra, K. C., *Crystal Bases of Verma Modules for Quantum Affine Lie Algebras*, Compositio Math. **92** (1994), 299–325.
- Klima, V., Misra, K. C., *Root Multiplicities of the indefinite Kac-Moody algebras of symplectic type*, Commun. Algebra. **36** (2008), 764–782.