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I INTRODUCTION

The phase space description of classical systems has proved to be a powerfy]
tool in the analysis of their physical properties. The key reason is that
phase spaces naturally arise as symplectic manifolds. The availability of
the symplectic structure enormously simplifies the task of specifying the
dynamical flow: in place of a vector field, one now has to specify only its
generating function, the Hamiltonian. There are simplifications also in the
reverse direction. For, it is often the casc that while one can easily identify
symmetries of physical systems, it is harder to obtain expressions of the
corresponding conserved quantities. In the phase space framework, these can
be obtained as the gencrators of canonical transformations corresponding to
those symmetries. (An example of this situation is discussed in Section 5 of
this article.) This two-way procedure is indeed one of the most elegant and
powerful applications of geometry to physics.

However, phase spaces are generally constructed by decomposing space-
time into space and time, and Hamiltonian mechanics is therefore widely
perceived as being non-covariant. In field theories in Minkowski space-time,
for example, considerable effort is devoted to showing that, in spite of the
non-covariant nature of the phase space, the Poincaré group does act on it
in a meaningful way. This complicated procedure is completcly UnIecessary.
For, it has been known for quite some time now that one can construct
phase spaces from entire histories without ever having to introduce preferred
mstants of time. The idea is old indeed. In fact, it can be traced! back
all the way to Lagrange!® It therefore scems most appropriate to discuss
the covariant phase space framework in a volume dedicated to him.f The
purpose of this article is to review this framework and to illustrate its power

by means of an example, which, to our knowledge, has not been discussed in

t In recent years, covariant phase spaces have appeared in a number of books. Examples
arc:  Souriau’s text on dynamics,! Chernoff and Marsden’s lecture notes on infinite
dimensional Hamiltonian systems,3 Schutz’s monograph on geometry and physics,4 and
Woodhouse’s on geometric quantization.” Quantization of linear fields in curved space-
times based on such a covariant Hamiltonian formulation is discussed, e.g., in Ref. 6. The
framework has also been used in general relativity in the stability analysis of stars and black
holeS,T’B for the construction of the phase space of radiative modes of the gravitational field
in the full, non-linear theory,”"'% in the definition of conserved quantities,n“13 and in the
analysis of the group of local symmetries.!*
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the literature.

Let us begin with an overview of the situation.

In terms of the familiar, non-covariant constructions, the basic ideas
of the covariant procedure can be summarized as follows. When the initial
value problem is well-posed, each dynamical trajectory in the configuration
space is completely specified by its initial data, which in turn correspond
just to a point in the phase space. Hence, by fixing an instant of time,
one obtains an isomorphism between the space of solutions to the dynamical
equations —i1.e., of dynamically allowed historics— and the phase space of
the system. One can therefore pull-back the symplectic structure to the space
of solutions. Since the symplectic 2-form on the phase space is Lie-dragged
by the dynamical vector ficld, the symplectic structure we thus obtain on the
space of solutions is independent of the choice of the initial instant of time.
Thus, the space of solutions is in fact equipped with a natural symplectic
structure —called by Souriau! the Lagrange form to emphasize the fact that
Lagrange was the first to recognize its existence. This is the covariant phase
space of the system. It captures all the relevant classical physics without
the necessity of sclecting a preferred instant of time. Typically, however,
this space does not have a natural cotangent bundle structure. It is only
when one is given an instant of time that one can identify each of its points
with an initial data set and reprcsent it as a cotangent bundle. However,
Hamiltonian mechanics does not need a cotangent bundle; it suffices to have
just a symplectic manifold for its arena. And this is precisely the structure
that naturally cxists on the covariant phase space.

How can one speak of dynamics in this setting? After all, a point of
the covariant phase space is an entire history. How can things “evolve”
then? The answer is that the familiar evolution appears in the disguise of a
mapping between histories. Consider, for example, a Klein-Gordon field in
Minkowski space. The time translation subgroups of the Poincaré group act
on the space of solutions to this equation and this action can be interpreted
as “time evolution.” Under this motion, the symplectic structure is left
invariant and the generator of this canonical transformation is precisely the
familiar energy function. More generally, given a notion of time, one can
introduce the notion of dynamics on the covariant phase space as follows.
Look for initial data of all dynamical trajectories and map each trajectory
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to another one, whose initial data at time ¢y are the same as the initial data
of the first trajectory at time #;. In the covariant framework, this mapping
between entire histories can be interpreted as the “time-evolution” from ¢,
to t1. Its generating function turns out to be usual Hamiltonjan.

In gauge theories, the non-covariant Hamiltonian description has first
class constraints; not every point of the phase space represents permissible
initial data. Furthermore, even if one is given initial data satisfying these
constraints, one does not obtain a unique dynamical trajectory in the phase
space because one can perform arbitrary gauge transformations in the course
of evolution. More precisely, the first class constraints generate gauge
transformations, and the Hamiltonian is unique only up to the addition of
constraint functionals. How are these features incorporated in the covariant
description? If one repeats the construction given above to pass to the
covariant picture from the non-covariant one, one finds that the space of
solutions is now naturally equipped with a degenerate symplectic structure —
or, in the standard terminology, a presymplectic structure. Motions along the
degenerate directions are precisely the gauge transformations of the theory.
Note that, since each point of the covariant phase space is a solution to all
field equations, there is no longer a constraint surface in the phase space
nor a constraint functional to generate gauge. The gauge directions are
coded directly in the degeneracy of the presymplectic structure. Finally, the
arbitrariness of the dynamical evolution also results from this degeneracy;
the Hamiltonian itself is unambiguous.

In Section 2, we recall the general framework for field theories on a
background space-time. Since the covariant approach deals with histories
rather than Cauchy data, it is now easier to sce the relation between the
Lagrangian and the Hamiltonian descriptions. In Section 3, we introduce
the covariant Hamiltonian description of gravitational fields (in general
relativity) which are asymptotically flat at spatial infinity. In the standard,
3 + 1 phase space formulation, while it is easy to see the role of spatial
diffeomorphisms, the role of space-time diffeomorphisms is rather obscure.
Indeed, as is well-known,'® because the Poisson algebra of constraints is
open in the BRST sense, it is considerably larger than the Lie algebra
of space-time diffeomorphisms. In the covariant approach, on the other
hand, the issue of diffeomorphisms is rather straightforward. Because we
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avoid a 3 + 1 decomposition, we can treat all space-time diffeomorphisms on
the same footing. However, to fully analyse this issue, we have to specify
the boundary conditions carefully. In fact, already the integrals defining
the symplectic structure itself diverge unless the boundary conditions are
delicately adjusted. Since this issue is overlooked in the earlier covariant
treatments, we will spell out the boundary conditions and point out the
precise role they play. In section 4, we show that the ADM 4-momentum'®
is the generator of the asymptotic translation group which arises from the
boundary conditions. Once again, the result differs from those obtained
in the well known 3 + 1 treatments. There, the Hamiltonians generating
space-time translations are expressible as a sum of a volume term —suitably
smeared constraints— and a surface term, the ADM 4-momentum integrals.
In the covariant treatment, the surface integrals alone generate asymptotic
translations. This final result is not new. The novelty of our treatment
lies only in the careful specification of boundary conditions and avoidance of
divergent integrals in the intermediate steps.

In Section 5, on the other hand, we analyse a new situation: space-
times which are asymptotically flat at null infinity. It turns out that the
introduction of the symplectic structure and the analysis of its properties in
this case is completely analogous to that discussed in Section 4. The only
difference is that now the Bondi-Metzner-Sachs (BMS)* group replaces the
Poincaré group as the group of asymptotic symmetries. Therefore, instead
of repeating the previous analysis, we shall focus only on the differences.
The final result is the following: we show that the generator of asymptotic
BMS translations can also be expressed as a sum of a 2-sphere integral —
the super-momentum evaluated at a cross-section of null infinity— and a
volume integral —the total super-momentum carried by gravitational waves
until the retarded instant of time represented by the cross-section. Using the
result of Section 4, we can therefore conclude that in space-times which are
asymptotically flat both at null and spatial infinity, the ADM 4-momentum
equals the sum of the Bondi 4-momentum!’ at a retarded instant of time
and the total 4-momentumn carried away by the gravitational waves until
that instant. (An independent proof was given in Ref. 18). Thus, apart from
clarifying certain issues, the covariant approach leads one to results which
simply cannot be obtained in the 3+ 1 treatments; it enables one to define
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quantities at null infinity and relate them to those at spatial infinity.

We will use units in which only ¢ is set equal to 1. Our other conventions
are as follows. Penrose’s abstract index notation is used for tensor fields on
space-time, while index-free notation is used for fields on infinite dimensiona]
spaces, such as the phase space. The space-time signature is (—,+,+, +).
The Riemann tensor is defined by Vi, Vyk, = %(VaVb — Vi )ke =: %Rabcdkd,
and the Ricci tensor by Ry = Rams™. The emphasis will be on presenting
the overall conceptual structure; the details of calculations will be omitted.
Also, the treatment will not be rigorous with respect to functional analysis.

2 PRELIMINARIES

Fix a smooth 4-dimensional manifold M, which is topologically  x IR, where
(the complement of a compact set in} ¥ is diffeomorphic to (the complement
of a compact set in) R®. We will assume that M is equipped with a
non-dynamical, globally hyperbolic metric _fjab whose Cauchy surfaces are
diffcomorphic to £. On this space-time, consider a dynamical theory for a
collection of fields ¢%(x), where « is a collective label for the fields, which
may include space-time indices and/or internal indices. Denote by F the
infinite-dimensional manifold of smooth fields ¢* on M satisfying suitable
boundary conditions. (These will be specified only in the detailed discussion
of general relativity to be considered in the remaining sections.) Functions
on F are functionals f[¢].

Our basic assumption will be that dynamics is specified by some action.
Thus, given any measurable region V' C M and any collection of fields ¢ € F
we have an action integral,

slél= [ 0, Vo,.)at, (2.1)

such that second order field equations for ¢* are obtained by requiring that Sy
be stationary under any variation X of ¢* which vanishes on the boundary
dV. We shall allow the Lagrangian L to contain terms which are pure
divergences; the action may thus have some surface terms. The variation

of Sy can be expressed as the gradient of Sy in F applied to X®, which, in
general, is of the form
1S, (X) = / Gol$)X™ %5 + }( F(6, X) d8., (2.2)
v 1%
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where G, whose vanishing gives the field equations, depends on derivatives
up to second order of ¢*, and F'* vanishes when X* = 0 on JV. (Note
that, in this procedure, we are regarding Sy as a differentiable function on
F even when the surface term in (2.2) is non-zero. That is, we are allowing
the gradient of Sy to be a distribution on V.) Our phase space will now be
the submanifold ' of F consisting of fields ¢ which extremize Sy, i.e. which
satisfy the field equations G, = 0. We indicate the natural embedding of this
submanifold by ¢ : T’ — F.

Given a Cauchy surface T, consider the 1-form 8y on T defined by
fe(X) := [ F*¢,X)dS,, (2.3)
3

for all vector fields X. This form will serve as a potential for our
presymplectic structure. In general, f5 does depend on the choice of B
(although, as we shall see below, one can often choose a potential which
is invariant under certain changes of hypersurfaces). Let us now consider the
case when V is bounded by two Cauchy surfaces © and ¥’ connected by a
timelike world tube 7. at spatial infinity. Then, using (2.2) and (2.3), we
have:

*dSy = by — 05 + 0+, (2.4)

Hence, the exterior derivative wy of 8y,
wel X, Y) :=df(X,Y), (2.5)
has a rather simple behavior under the change of the Cauchy surface:
0= *d?’Sy = wy — ws + wr,- (2.6)

Thus, the current whose integral over T gives the 2-form wg on T 1s conserved
due to the equations of motion satisfied by the fields ¢ and their perturbations
X.Y. Therefore, provided our boundary conditions are such that they force
the term wq, to vanish, we would find that, unlike its potential fs, the 2-
form w on T is in fact independent of the choice of the Cauchy surface.
Furthermore, being the exterior derivative of the 1-form 6y, the 2-form w
is closed. This is the presympleciic structure —or, the Lagrange form—
on the space of solutions I' of the field equations that we are seeking. We
will see that, in the gravitational case to be treated in detail, the houndary
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conditions do indeed satisfy the required condition. Finally, note that we
could have defined the one-form fz and its exterior derivative wy on all of
F. However, in the absence of field equations, we would have found that
the current defining the 2-form fails to be conserved, whence the 2-form has
a dependence on the Cauchy surface which can not be eliminated just by a
suitable choice of boundary conditions.

In general, the presymplectic 2-form so defined on I' is degenerate and,
as pointed out in the introduction, motions along these degenerate directions
correspoud to gauge transformations of the theory. Denote by N C IT the
set of degenerate directions X: w(X,Y) =0 for all Y € TT. Then the Lie
derivative of w along such directions is always zero: X € N implies

Ex-i.u‘ = d(lxh)) + ]'._xdf-u' =10. (27)
Furthermore, the degenerate flats N are integrable: if X and X are two

vector fields on " which lie in the degenerate flats everywhere, and Y is an
arbitrary vector field, using (2.7) we have:

W(LxX,Y) = Lx{w(X,Y)) —w(X,LxY) =0, (2.8)
where in the last step we have used the fact that X is is a degenerate
direction of w. Therefore, one can quotient I' by the integral manifolds
of the degenerate flats N and obtain a natural (non-degenerate) symplectic
structure on the resulting reduced phase space.

Remarks:
1) In the standard situation, when the action is of first order, § =

I, L9, Vd) d*, one can obtain®!* an explicit expression for the forms 0y
and w in terms of the Lagrangian L. Now, the variation of the action is given

by
oL oL . oL o
dS(X) = L. -3 Xedhy + X°ds, 2.9
(X) /1/(0@“ = v 063 (29)

where ¢ := V,¢*, whence the presymplectic potential 1-form now becomes

(B2)g(X) = [R(OL/0¢%)X*dS,, resembling in form the expression § = pdg
from mechanics. Taking the derivative, we obtain the symplectic structure:

- — 02L avyvf ay 3
(@)X, Y) i= (d05) (X, V) = L [ e VXA - X°¥%) (2.10)
I, (Y“%Xﬁ—x‘*%yﬁ)]ds
Y A g
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These expressions have been useful in a number of applications.>~8

2) In classical mechanics, it is only the (pre)-symplectic 2-form that is
relevant; in general its potentials do not have a direct physical significance.
However, sometimes the use of potentials does simplify calculations. A
particularly useful example is the calculation of Hamiltonians 'genera,ting
a given infinitesimal canonical transformation X. By definition of an
infinitesimal canonical transformation, the Lie derivative of w by X vanishes.
Of course, the same is not true of a general symplectic potential. If, on the
other hand, we manage to find a symplectic potential § which is Lie-dragged
by X, the identity £x8 = ixw+ d{8(X)) = 0 implies that (modulo an additive
constant) H = 6(X) is the unique Hamiltonian generating the given canonical
transformation.

3) In field theory, one is often interested in the canonical transformations
associated with space-time diffeomorphisms. Suppose that £° is a vector field
on space-time such that £.$* is a solution of the linearized field equations
around ¢, satisfying the boundary conditions defining F (or I'). Then
X = Lgg can be considered as a vector field on T, generating a 1-parameter
family of diffeomorphisms o; : ' — T. Let us examine the behavior of
a symplectic potential 8y under the action of these diffeomorphisms. By
definition of Lie derivative, we have:

(Lxgfse(¥) : = > [(0 )6(¥) = ()]

1 (2.11)
= 11_1"% E [(92)55¢(g€*y) - (02)¢(Y)] .

Now, if the background non-dynamical metric .y is Lie-dragged by £°, then
this last expression can be written in terms of the current F* (of (2.3)) as

(Lxgle)e(Y) = f(ﬁcFa) dSq
z
= f FoetdS,; + ] (Vo) €98 .
an z

Therefore, in these cases, the Lie-derivative of 8z by X, vanishes if the
surface integral in (2.12) is zero and £° is tangent to T or the current F*
is conserved. If 6y does have this property, then, by remark 2) above, the
Hamiltonian generating the infinitesimal canonical transformation X, on the

(2.12)

phase space is given by 8(X(,). Consider, as an example, a Klein-Gordon field
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¢ in Minkowski space-time. In this case, for reasonable boundary conditions
on ¢, the potential 1-form defined by 8,(Y) := —1 [[(Vu¢) Y — ¢ (V,Y)]d§°
satisfies all these properties for all Killing fields £* of the Minkowski metric;
it is Poincaré invariant. This enables one to write out the expressions
of the generators of the Poincaré group simply as: —i [([(Vid)(L0) —
¢ (Val9)] dS".

4) We can now use the previous remark to go back to the issue of the
dependence of 8z on the hypersurface . From (2.11) we also obtain that

(Lxfn)p(Y) = 1135% (oo ) ous(oexY) = (05) (Y]

= lim = [(0,_ oY) — (0)s(1)]

e—0 €

(2.13)

where we have again assumed, in the last step, that the background field Eab,
if it appears explicitly in the integrand giving fs, is Lie-dragged by £°. We see
therefore that an alternative condition for the Lie-derivative of a potential 85
by X to vanish is that 65 be left unchanged under the replacement of ¥ by
its image under the space-time diffeomorphism generated by €%, Thus, the
potential in our example above for a Klein-Gordon field in Minkowski space-
time is Poincaré invariant also in the sense of the action of the Poincaré group
on X.

5) Finally, we note that the steps leading to (2.13) above can also be
repeated for a symplectic structure. Since w is manifestly independent
of &, we conclude that if the background fields that possibly appear in
its expression arc Lie-dragged by £°, w is necessarily Lie-dragged by X,
the motions generated by X, on the phase space are necessarily canonical
transformations.

3 THE COVARIANT PHASE SPACE OF GENERAL RELATIVITY

We now turn to general relativity. In this section we will focus on
gravitational fields which are asymptotically flat at spatial infinity. We begin
in the subsection 3.1 by stating the precise fall-off conditions that we will
assume. In 3.2, we derive the expression of the presymplectic structure
following the procedure outlined in section 2. In 3.3, we analyse some of
its basic properties which, in section 4, will enable us to express the ADM
4-momentum as the generator of space-time translations.
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3.1 Boundary conditions

Fix, as before, a 4-manifold A which is topologically £ x IR, where (the
complement of a compact subset of} the 3-manifold I is diffeomorphic to (the
complement of a compact set in) IR?. The set F of histories of interest is now
to consist of smooth, globally hyperbolic, Lorentzian metrics gq, on M whose
Cauchy surfaces are diffeomorphic to T and which are asymptotically flat at
spatial infinity. We shall see in the next subsection that unless the boundary
conditions are carefully adjusted, the integral defining the presymplectic
form does not converge and hence the Hamiltonian description fails to be
meaningful. Therefore, in this subsection, we make a small detour to specify
the precise fall-off we will assume on the space-time metric ga.

Since our aim is to construct a covariant Hamiltonian framework, we
must use a 4-dimensional notion of asymptotic flatness. Thus, our task is to
specify how the space-time metric is to behave as we approach infinity in any
spacelike direction, not necessarily restricted to lie within a given Cauchy
surface. This can be done in a manifestly coordinate-invariant fashion by
attaching to space-time a certain boundary and specifying the behavior of
the metric at this boundary.'® However, since this is a recent construction,
and since the techniques it uses may be unfamiliar to readers interested in
symplectic geometry, we will present an essentially equivalent set of boundary
conditions —involving asymptotic coordinate systems— which is easier to
grasp intuitively.

Let us begin by recalling the situation in Minkowski space. Here, one can
approach spatial infinity along spacelike geodesics. To take limits of physical
fields as one goes to infinity following these geodesics, it 1s convenient to
introduce a set of coordinates (p,7,0,¢) where # and ¢ are the standard
spherical coordinates and p and 7 are related to the standard r and ¢ V.ia:
{ = psinh7 and r = pcosht. Then, outside the light cone of the origin,
Minkowski space is foliated by a 1-parameter family of timelike hyperboloids,

= const, and spatial infinity is represented by the limiting hyperboloid H
defined by “p = cc.” H can be reached by going to infinity along radial
spacelike geodesics, curves on which (7,6,¢) remain constant. Qutside the
light cone of the origin, the Minkowskian metric 77,5 can be expressed as:

Mab = Palb e ,02}&23,, (31)
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where Y, is the induced metric on the unit timelike hyperboloid p = 1
and p; := Jgp. The idea now is to impose asymptotic flatness at spatial
infinity by requiring that the components of the space-time metric g, in
this chart approach those of 7. at spatial infinity at an appropriate rate.
There exists in the literature an extensive discussion on the issue of what
the appropriate rate is in this 4-dimensional setting (sce e.g. Refs. 20, 21).
Here, we will only state the resulting boundary conditions in the coordinate
language introduced above® and briefly discuss their physical implications.

The metric gq will be said to be asymptotically flat at spatial infinity if
it admits an expansion of the type:

Gab = (1 + %)210&{’13 + Pz(hgb - 201;2!’) + Rab, (3.2)

where o is a function on the (unit) hyperboloid H, even under the natural
inversion mapping (induced by the Minkowskian transformation z# — —z#},
and where, in the Cartesian coordinates associated with our chart, the
components of the “remainder,” R, fall off at least as fast as 1/p2. The
content of these conditions can be explained as follows, First of all, we are
requiring that g. approach 7, as 1/p. Secondly, the first-order deviation
from 74 is required to satisfy three conditions: (i) there is no mixed
“radial-angular” component to this order; (ii) the p-p component —the
mass aspect— has even parity under reflection; and, (iii) the hyperboloid
component is completely determined by the p-p component and the unit
hyperboloid metric; it is precisely —20h%,. The first condition is indeed very
mild; if g does not satisfy it, one can always find a diffeomorphically related
metric which will satisfy this condition. The last two conditions ensure
that the asymptotic symmetry group is the Poincaré group. The second
condition rules out the possibility of making what is known as “logarithmic
translations” while the third rules out the so-called “spi supertranslations.”
(For details, see Refs. 20, 21). These restrictions are not stringent in the
sense that there is a large class of solutions to Einstein’s equations which
satisfies them. Roughly speaking, any solution which one intuitively thinks
of as being asymptotically flat at spatial infinity can be made to satisfy the
definition by exploiting the diffeornorphism freedom. In essence, the failure
to thus satisfy (iii) would occur only if the solution is of NUT-type, carrying
a non-zero “magnetic mass,” and hence fails to be asymptotically flat in the
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intuitive sense. We know of no solution in which (ii) fails. It is quite likely
that the covariant phase space analysis can go through under even weaker
assumptions. However there is no obvious physical ground to weaken the

assumptions.

3.2 The presymplectic 2-form

Following the procedure outlined in section 2, we can now define the
covariant phase space of general relativity to be the subspace T of F consisting
of solutions g, of Einstein’s (vacuum) equations. Thus, in particular, each
elemment of T' is asymptotically flat. Our task now is to introduce on I' the
appropriate presymplectic structure.

The first step in this procedure is the specification of the action. It
is convenient to begin with the first order, Palatini formalism in which the
metric g, and the connection V are at first independent and the action is

given by:

1 a
Sv[g1v] = i/vd4$ v—ag bRﬂb(v)

(3.3)

= %/Vd‘lm V=9 9 (Ol s + T4l ™ i)
where we have set k = 8rG. Let us compute the potential 8y for the
presymplectic structure. A tangent vector v to F is now represented by a pair
v = (g, 6T) of fields on M satisfying the appropriate boundary conditions.
Following the procedure outlined in section 2 (see especially equations (2.9)—
(2.10)), one can compute the action of fz on a general tangent vector v at a

point g, of F. The result is:1
1 min
@)ory(1) = 3 L g™, dS). (3.4)

Taking its exterior derivative, one obtains the presymplectic structure w. Its

i With our boundary conditions, the integral defining this presymplectic potential need
not converge. Finiteness could have been guaranteed by adding to the action a 51.1ita.ble
boundary term. Such additions do not affect the presymplectic structure itself, which, as
we shall see is finite. Therefore, for the simplicity of presentation we have refrained from

adding boundary terms.
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action on two tangent vectors v and ' at the point {gu, ['%.) is given by:

L
(@)ien(1,7) = ﬁLdSc [2 §TE, (64 4+ 1 g6 1n, g, )
(3.5)
~ 26T, (8™ + § g6 In, g,)].

Recall, however, that we are only interested in the pull-back of this 2-form
on F to the phase space I'. Since for points in I' the covariant derivative
operator V is compatible with the metric g,, the 6Ty term in v is completely
determined by 8g4:

6% = 3 4V bgas + Vb bgad — Vi bgar). (3.6)

Hence, from now on, we will denote the tangent vectors 7 to the phase space

just by vy = &gas. Substituting (3.6) into (3.5), we obtain, for all g, in I
and tangent vectors v and +' to T,

1 n il :
(w)g(ﬁfa 7!) = ﬂ; [ j:ea Cq Fb; i!('ﬂfabvnﬂf'éd = ﬁf;bvn’}'cd) H Zva(')'b[pq.'/m]b)J dSp, (37)

where €4.q 1s the volume form associated with gg. Finally, we use the
boundary conditions satisfied by wvarious fields to further simplify this
expression. Since each gqp in I' has, in particular, the fall-off given by (3.2),

the tangent vectors v, have the asymptotic form:

2é0 ;
= (paps — P15 + R (3.8)

where, as before, the components of the remainder R, in the asvmptotic
Cartesian chart fall off as 1/p?. With this information at hand, let us return
o (3.7). Since the last term on its right hand side is a total divergence, it
can be converted to a surface term. The asymptotic forms (3.8) of v,, and 7.,
now imply that the integrand of the surface term in fact vanishes identically
(at infinity). Consequently, (3.7) reduces just to:

1
(w)g('Ya ’YJ) a ‘E L(Tabvnﬂf;d - ﬁf;bvnf}’cd) fcmc(,1 dvbdq- (39)

This is our final expression of the presymplectic 2-form w on the phase space

I'. Apart from overall numerical factors, this is also the expression used in
Refs. 7-13.
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Given this expression, two questions arise immediately: Do the boundary
conditions ensure that the integral is finite? Do they imply that it is
independent of one’s choice of the Cauchy surface £7 For the phase space
description to be meaningful, it is of course eritical that these questions be
answered affirmatively. Let us begin with the first. If one just assumes —as
is often done— that the metrics gy in I should approach the flat background
3ap as 1/ p, one finds that the integrand in (3.9} is guaranteed to fall off only as
1/p%. so that the integral defining .o would. in general, diverge logarithinically.
It is precisely to ensure that this does not occur that we need to be careful
with the boundary conditions. What is the situation with the conditions we
imposed in section 3.17 Choose for & the hypersurface given (possibly outside
some compact sct) by 1=0. Then, the integral in (3.9) can be expressed as:

sifb] = : /mr_ld?‘j{ (b7 80 — 87 0-b6) A%
kg 52
+ ]Il(illlfﬁ&fl\ ﬁth TETTIS,

(3.10)

for any “radius™ I? outside which ¥ is topologically R?. In this simplification,
we have ah‘ead}' used conditions (i} and (iii) of section 3.1 on the 1/p-parts
of v, and +/,. Yet. we now sec explicitly that in the absence of a carefnl
adjustment of boundary conditions the integral docs, in gencral, diverge
logarithimically. However, the parity conditions we imposed on o (condition
(ii) of section 3.1} come to rescue. Because of these conditions, the 2-sphere
integral in (3.10) vanishes identically. thereby rendering the whole integral
finite.] Note however that, since we nsed conditions (i) and (iii) to arrive at
(3.10), the parity condition (ii) alone would not have assured finiteness; all
three conditions on the 1/p part of g are needed in our proof.

Let us now consider the second question: Are the boundary conditions
strong enough to ensure that the integral is independent of the choice of the

Cauchy surface £7 Since gq is Ricci-flat and since v, and vh, satisfy the

i Thus, the integral (3.8) defining & is in fact defined as follows: First perform the
integral on a subset of & defined by r < rg and then take the limit as 7o tends to infinity.
The following simple example illustrates the necessity of this subtlety. Consider the funetion
f(r,8) = (sind /r on IR, The integral of this function over the region of R? defined by
r > R > 0 appears to diverge logarithmically. Yet if we first perform the integral up to
r =1y > R and then take the limit as ry tends to infinity, we get a finite answer, namely
ZETO.



432 A. Ashtekar, L. Bombelli and O. Reula

linearized Einstein equation off g,
2 V’“V((m,)m R Vavb’}‘ G vam"fﬂb =0 (311)

(where v is the trace of va), it follows either by an explicit caleulation or
from the general arguments given in section 2 that the “current” defining w
in (3.9) is divergence-free. Hence, given any two Cauchy surfaces £ and X'
bounded by a timelike tube T, at infinity, the difference between the value
of w evaluated on © and on ¥’ is given by the integral:

anc

(Vb V¥ s = ¥ VnVea) €47, d, (3.12)

T )
Thus, the surface independence of « is guaranteed if and oanly if this last
integral vanishes. If ¥ and &' are related to one another by an asymptotic
time translation, the integral can be seen to vanish just by a power counting
argument: the integrand falls off as 1/p%, while the volume of integration
grows only as p?. However, if the two surfaces are relatively boosted, this
simple argument is insufficient. It is here that the boundary conditions once
again enter in a delicate way. Let us consider a set of hypersurtaces 7, C 'H,,
where M, is the p = const hyperboloid, which tend to T as p tends to
infinity. Then, because of the asyinptotic form {3.8) of v, and v.;. (3.12)
reduces to an expression of the form lim, .., f?,, 0(1/p* d*v, which vanishes,
since, even when ¥ and &' are relatively boosted, the volume of T, grows only
as p3. In this calculation, it is the condition (iii) which ties the “angular-
angular” component of the leading order piece of gq to its “p-p” component
that plays the key role.

To summarize then, using the first order, Palatini form of the action,
we have obtained the expression of the presymplectic 2-form w on I'. Our
boundary conditions at spatial infinity are sufficicnt to ensure that the 2-form

is well-defined and that it is independent of the choice of the Cauchy surface
¥ used in its evaluation.

3.3 The kernel of w

As we saw in section 2, in general the presymplectic 2-form has a
kernel; the degenerate directions are to be interpreted as infinitesimal gauge
motions. In general relativity, one would therefore expect that the degenerate
directions of w are intertwined with space-time diffeomorphisms. We shall
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now see that there is indeed a precise sense in which this is true. Furthermore,
since we are using a manifestly covariant framework, unlike in the standard
Hamiltonian formulations based on initial data on spacelike surfaces, we will
be able to treat all space-time diffeomorphisms on the same footing.

Let £2 be a smooth vector tield on the 4-manifold M. Under the action of
the diffeomorphisms it generates, each metric g, undergoes an infinitesimal
change, given by ¥gas = Lefup. Since gy has vanishing Ricel tensor, each
of the l-parameter family of metrics obtained by the action, on g., of
the l-parameter group of diffeomorphism generated by £° is also Riecci flat.
Hence {or, by explicit calculation) it follows that, for all £*. the tensor field
Yeeyab = 2V.&p) satisfies the linearized Einstein equation (3.11). Thus, each
vector field €2 on M gives rise to a vector field v on the phase space
T (provided of course 4. satisfies the boundary conditions (3.8)). Based
on the intuitive idea that diffcomorphisms are the gauge transformations of
general relativity, one wonld expect these vector fields to belong to the kernel
of the presyinplectic structure w.

Let us examine if this is indeed the case. Let 744 be an arbitrary vector

field on I'. Then, a straightforward but rather long caleulation yields:

(. Leg) = — 2% [?gv B EF N Y de? + \ - g e ffj-?,le[{ifp] dSnJ :

) o (3.15]
Thus, we see that, for any £* for which v = £:gq satisfies the boundary
conditions {3.8), the symplectic inner product between an arbitrary vector
ficld 7,4 and £g45 depends only on the asymptotic values of £%, its derivatives,
and v4. This remarkable behavior occurs precisely because the metric gos and
the linearized field v, satisfy the field equations. However, we note that, in
general, the integral in (3.13) does not vanish. Thus, the covariant framework
telis us that not all diffeomorphisms are to be tegarded as gauge! In fact, it
is quite straightforward to show that the integral vanishes for all gas and Yae
if and only if the vector field £° vanishes at infinity. Thus, it is precisely those
diffeornorphisms which (preserve the boundary conditions and which} are the
identity at infinity that are to be regarded as gauge. The general argument
given in section 2 now tells us that these degenerate directions are integrable
and that we can pass on to the reduced phase space I’ by quotienting I' by
their integral surfaces. I' naturally inherits a (non-degenerate) symplectic
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structure & from w. Points of the symplectic manifold (I',&) represent
the “true degrees of freedom” of the asymptotically flat gravitational field.
Finally, we recall that the asymptotic symmetry group can be defined as
the quotient of the group of space-time diffeomorphisms which preserve the
boundary conditions by its subgroup consisting of the asymptotically identity
diffeomorphisms. For our choice of boundary conditions, this is the Poincaré
group.”” The covariant phase space formulation tells us that the action of
these asymptotic symmetries is not to be regarded as gauge. In particular,
this action can be unambiguously projected down to the reduced phase space,
it

What is the structure of the gauge group of the theory? It is
straightforward to check that the mapping £* — v, from the space of vector
fields on M to the space of vector fields on T is linear and 1 — 1, and that
the Lie bracket on T' between 7 and +g is precisely the vector field Ve
associated with the Lie bracket [¢,£] on M betwecen £ and £°. Therefore,
we have a faithful representation on T' of the group of diffeomorphisms that
preserve our boundary conditions on A . Furthermore, using the relation
between this covariant phase space and the standard phase space of the 341
framework, one can show? that the vector fields v, exhaust the kernel of w.
Thus, the gauge group on T is precisely the image under the map £ — Y
of the group of all diffeomorphisms which (preserve our boundary conditions
and) are asymptotically identity.

How does this situation compare with that in the standard!® 3 + 1
phase space formulation? In that formulation, constraints, being first
class, generate gauge. However, the Poisson algebra of constraints contains
structure functions rather than structure constants; it is open in the BRST
sense. Consequently, the structure of the gauge group in that theory does
not have a simple relation with that of the space-time diffeomorphism
group.'® However, it is nonetheless true that each asymptotically identity
diffeomorphism is represented as a gauge motion in that framework as well,
in the sense that it is generated by constraints. Finally, note that whereas

t This I' does nat have the conical singularities that arise in the analogous construetion in
the spatially compact case. This is because all global Killing fields belong to the asymptotic
symmetry —rather than gauge— group; their action is not factored out in the quotient
construction leading to T".

i
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in Yang-Mills theories, gauge transformations correspond to motions in the
internal space, in general relativity they correspond to motions in space-time.
Therefore, there is a difference in the sense in which the term diffeomorphisms
are regarded as gauge motions only in the sense that, to specify a 4-geometry,
it is sufficient to provide a one-parameter family of initial data sets which
are related to one another by, say, an asymptotic time-translation; it is
redundant to provide, in addition, the data sets which are related to these
by diffeomorphisms which are asymptotically identity. Thus, as in Yang-
Mills theories, one can use a gauge fixing procedure and select, from each
equivalence class of initial data related to each other by asymptotically
identity diffeomorphisms, one representative and describe dynamics in terms
of the cvolution of these representatives. In the covariant phase space
formulation, the situation is perhaps simpler: We say that two metrics g
and g, on M are gauge related if one is the image of the other under an
asymptotically identity diffeomorphism. (Note that, if we just perform a
diffeomorphism and do not carry the space-time metric with it, the motion

is not to be regarded as gauge.)

4 THE ADM 4-MOMENTUM

In section 3.3, we saw that if a vector field £* on M represents an
asymptotic symmetry —i.e. a generator of the asymptotic Poincaré group—
the corresponding vector field vy = L.gm docs not belong to the kernel
of w. Nonetheless, from our discussion in section 2 (see remark 5 at the
end of that section), it docs follow that v, is a canonical transformation;
L.,(s)w = 0. One can therefore ask what its generating function is. From
our experience with Hamiltonian mechanics we know that the generatorg of
translations can be interpreted as the energy-momentum of the system, and
those of Lorentz transformations as the relativistic angular momentum. In
general relativity, we already know the correct expressions for these physical
quantities. Therefore, the question now arises if the generating functions
of asymptotic symmetries computed by Hamiltonian methods agree with
these expressions we already have from geometric considerations.??! Note
that the answer to this question is not obvious, especially becanse now the
translational and Lorentz-rotational symmetries are only asymptotic and not
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exact. Indeed, a detailed calculation is needed, a calculation which depends
on the precise expression of the presymplectic structure and the specific
boundary conditions we used in the construction of the covariant phase space.
In this section, we shall illustrate how these calculations are carried out by
explicitly showing that the generating function of asymptotic translations
on the covariant phase space I' are precisely the components of the ADM
4-momentum.

Recall that, by definition, the generator H of the infinitesimal canonical
transformation ¥ = Lefap must satisfy the equation

w(y, Leg) = iydH = L, He

L1
= El_l}l'é E(Hf[g+ ey] - Hf[g])’

(4.1)

for arbitrary vector fields v on T'. This equation determines H uniquely up
to an additive constant. Therefore, our strategy is to consider the case in
which £ is an asymptotic translation, evaluate the left hand side of (4.1)
explicitly, and then solve the differential equations we thus obtain on H,.
For a general (boundary conditions preserving) vector field £°, the left hand
side was already computed in section 3, and the result given in (3.13) as a
sum of two surface integrals. For the case of translations, the second surface
integral vanishes identically (simply by power counting). Furthermore, in the
first integral, we can replace €™ . the metric g, and the derivative operator

pg*
¥ by their asymptotic values. With these simplifications, (4.1) now becomes,

1

~ g5 € Dirma 4t = L, M, (4.2)

where zero over fields denotes their asymptotic values (determined by the
flat background metric 5,). Since this equation is linear in 7vq, using the
interpretation of 74, it can be readily integrated. The solution is simply:

1

o azém"pq £P Oums V. (4.3)

H{ =
Of course, the differential equation (4.2) can determine the Hamiltonian H.
only up to an additive constant. As usual, we eliminate this freedom by
requiring that the value of the Hamiltonian at Minkowski space be zero.
Then (4.3} is the unique solution to (4.2).

e s
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Let us now use the asymptotic form of gq to further simplify this
expression. Using (3.2}, we have:

Hy= —% jég € py &F P2 0m(0 p) Tns 0%, (4.4)
where ¢4 is the induced metric on the 2-sphere intersection of ¥ with
the constant p hyperboloids. Using the intrinsic geometry of the unit
hyperboloid, it is straightforward to reduce (4.4) to the “camonical” form
of the ADM 4-momentum one finds in the geometrical, 4-dimensional
approaches?®?! to conserved quantities:

1
T2k

where €., and D are, respectively, the alternating tensor and the derivative

H, f €" s (D Dy + 0Ty} dv®, (4.5)
)%

operator compatible with the unit hyperboloid metric hqp. Finally, we note
that both the generator H, and the canonical transformation it generates
can be projected down unambiguously to the reduced phase space (&), A
point on the reduced phase space is an entirc equivalence class of histories —
two historics being equivalent if they are gauge related— and asymptotic
translations map one class to another. The flow corresponding to an
asymptotic time translation can be regarded as dynamics,

How does this calculation compare to its analog in the 3+1 frameworks?
There are two key differences. In the covariant calculation, the Hamiltonians
generating asymptotic translations are made up entirely of surface terms.
Secondly, given an asymptotic translation £ its generating function or
Hamiltonian H, is unique. However, since the presymplectic structure is
degenerate, a given Hamiltonian does not give rise to a unique Hamiltonian
vector field; we have the freedom to add to the Hamiltonian vector field any
vector field which is everywhere in the kernel of w. In the 3+1 frameworks, on
the other hand, the Hamiltonians generating asymptotic translations contain
a volume term —integrals of constraints smeared out with the appropriate
lapses and shifts— in addition to the surface terms. Thus, although, on the
constraint surface, the numerical values of these Hamiltonians coincide with
their analogs in the covariant framework, the functional forms of the two sets
are quite different. In particular, in the 3 + 1-framework, the expression of
the Hamiltonian depends on the values of the lapse and shift fields —and
hence of the asymptotic translation £*— in the interior. In the covariant
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framework, on the other hand, the expression is insensitive to the way in
which the asymptotic translation is extended to the interior. Secondly, on
the 3 + 1 phase space, the symplectic structure is non-degenerate and each
Hamiltonian generates precisely one vector field.

Remark: Tt is easy to show that our Hamiltonians are numerically equal
to those in the 341 framework (if one restricts oneself there to the constraint
surface). As an example, let us consider the case when £* is an asymptotic
time translation and use the form (4.3) of the generating function, where
the surface of integration is chosen to be orthogonal to £°. Then, we have:
gm"pqu dv® ~ —((3”‘3’(3”" - &msa"p) dg'p, where g, is the metric defined on &

by 4. Therefore, we obtain

1

HE = ﬁ 82(0n9m6 - Omgns) q",mpq"ns dSp = Fapm, (46)

the standard form of the ADM energy associated with gg.

5 THE BONDI 4-MOMENTUM

Let us now consider space-times which arc asymptotically flat also at null
infinity and examine the action of BMS translations!” on the corresponding
phase space I'. Qur experience with the boundary conditions at spatial
infinity suggests that this action would also preserve the presymplectic
structure and that the corresponding generating functionals would provide us
the expression of the Bondi 4-momentum. We shall now see that this general
expectation is indeed correct. At spatial infinity, the ADM 4-momentum
was In fact first introduced'® using a Hamiltonian framework, albeit one
based on a 3 + 1 description. At null infinity, by contrast, the expression
of the 4-momentum was initially introduced by Bondi and Sachs using only
geometrical and physical intuition on the expected fall-off of the metric and
the Weyl curvature as one recedes to infinity along null directions. It later
turned out that the expression of the flux of 4-momentum carried away by the
gravitational waves, obtained by Bondi and Sachs, could in fact be recovered
from a phase space description of the radiative modes of the gravitational
field.!® The present covariant Hamiltonian treatment extends that result; it
allows us to derive expressions of both the Bondi 4-momentum and its flux
using phase space methods. We do not see any a priori reason why the
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Hamiltonian expressions of the 4-momentum must coincide with those of
Bondi and Sachs. The fact that they do provides additional motivation in
support of the boundary conditions normally used at null infinity, and the
gravitational radiation theory that results in the framework of exact general
relativity.

We shall divide this discussion into three subsections. The first, 5.1,
is devoted to preliminaries. We state the precise boundary conditions
assumed at null infinity and summarize certain results, due to Geroch and
Xanthopoulos,?? on the asymptotic behavior of linearized fields in space-times
satisfying these conditions. In 5.2, we recall the structure of the asymptotic
symmetry group —particularly its translation subgroup— as well as the
definition of the Bondi 4-momentum. In the final part, 5.3, we present the
main result (see figure}: Given any cross-section C of future null infinity,
T+, the sum of the Bondi 4-momentum evaluated at C and the total flux of
momentum through the portion of Z% in the past of C is the generator, on
T, of the BMS translations.

The Penrose diagram of an
asymptotically flat space-time
(“r-t plane”). T is a Cauchy
surface; I represents null in-
finity; S is a partial Cauchy
surface that intersects 77 in a
2-sphere cross section C; and,
A is the part of IT in the past
of . In section 5 we use S U
A in place of the Cauchy sur-
face £ to evaluate the 'presym- - &
plectic 2-from and the Hamil-
tonian generating translations.

5.1 Boundary conditions

As at spatial infinity, the boundary conditions to be used at null infinity
are most succinctly expressed as requirements on a certain type of completion
of the physical space-time. At spatial infinity, we avoided the completion
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because the ideas involved are rather recent.'® At null infinity, on the other
hand, the ideas were first introduced in the literature already in the mid-
sixties®™ and it is well known that what is needed is a confomal completion.
Therefore, in this section, we shall formulate the boundary conditions in
terms of this completion.

A space-time (M, gu) will be said to be asymptotically flat at null infinity
if there exists a manifold M with boundary OM =: 7 which is topologically
5?2 x R, and a Lorentzian metric g, thereon such that: (i) on M, §a is
conformally related to gap; Gop = 2% gas; (it) at T, we have @ = 0 and V,Q # 0.
The vanishing of the conformal factor € at 7 ensures that 7 is “at infinity,”
while the fact that V,£2 does not vanish at 7 ensures that “Q falls off as 1/r.”
In general, the boundary 7 has two components, one, I, serving as the
future light cone of the point at spatjal infinity, and the other, 77, serving
as the past light cone. We shall focus on the future boundary, although the
discussion applies in an obvious fashion also to the past boundary.

The phase space I' will contain only vacuum solutions. For such
asymptotically flat metrics g,, one can show that it is always possible to
choose a conformal factor  such that V*V,Q = 0 in a neighborhood of 7+
and V,V,Q = 0 at I+, Throughout this scction we shall assume that such
a choice has been made. The field equations also imply that Z7 is a null
3-surface, i.e. its normal n® ;= §* V,Q is null. Z% is “ruled” by the integral
curves of this vector field n®. The integral curves are called generators of 7.
The space of these generators, called the base space, is topologically $?. The
intrinsic “metric” on I, gy, is degenerate with signature (0,+,+); it is the
lift to Z* of the metric on the base space. Since the 2-sphere admits a unique
conformal class of metrics, it is possible to further adjust the conformal factor
 such that the metric g, on the base space is precisely the standard, unit 2-
sphere metric. Such a “conformal frame” is called a Bondi-frame. (Note,
incidentally, that this frame is not unigue; the 2-sphere admits distinct,
conformally related metrics each of which is globally isometric with the unit
2-sphere metric.)

Finally, let us consider the asymptotic behavior of linearized solutions,
i.e. of tangent vectors to I'. Geroch and Xanthopoulos? have analysed
this issue in detail; here we will only state the results we need. Fix
an asymptotically flat, vacuum space-time, (M, g,) and consider on it a
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linearized solution -, to Einstein’s equation which has initial data of compact
support on some Cauchy surface. Set 74 = Q7 lvy, 7, = Q7 lryn® and
7 = §%7,. Then, possibly after a gauge transformation, -y, satisfies the
following conditions: (i) in a neighborhood of T+, Vbry — Vur — 37, = 0;
(ii) 7o and 7, admit smooth limits at Z+. One can show®!? that the trace-
free part of the pull-back to It of 7, captures precisely the two radiative
modes of the gravitational field contained in v. At the level of the functional
analytic rigor of this paper, we can therefore say that the tangent space
to I' at the point g, is spanned by the linearized fields v, satisfying the
Geroch-Xanthopoulos conditions.

5.2 The asymptotic symmetries and the Bondi 4-momentum

To discuss asymptotic symmetries, let us begin, as before, by considering
diffeomorphisms which preserve the boundary conditions. Detailed
considerations show that the diffeomorphism generated by a vector field £°
on M preserves the boundary conditions if and only if £* admits a smooth
extension to IT and Q%L,g, vanishes on T+.21 If the vector field £% vanishes on
T+, it leaves the structure of null infinity untouched and is therefore regarded,
in these geometrical considerations, as “gauge.” The asymptotic symmetry
group —the Bondi-Metzner-Sachs (BMS) group— is the result of quotienting
the space of all diffeomorphisms that preserve the boundary conditions by
this “gauge group.” Of special interest to us is its translation subgroup. At
T%, consider first infinitesimal BMS transformations of the type £* = anf,
with £, = 0, where & stands for “equality at T+.” These are called BMS
supertranslations. Note that, under a conformal rescaling, Q2 — pQ, we have
n® — u'n% whence « transforms as o — pa. Thus, o is a conformally
weighted scalar with weight one. Now consider those BMS supertranslations
for which, in a Bondi conformal frame, ¢® 3y is a conformal Killing field of
the unit 2-sphere metric gq on the base space of I+. It is straightforward
to verify that this can occur if and only if « is a linear combination of the
first four spherical harmonics. This is a 4-dimensional subspace of the space
of BMS supertranslations. It turns out that this subspace is independent of
the particular choice of the Bondi conformal frame made in its construction.
This is the space of BMS translations. If we choose @ 21 in a Bondi frame,
the corresponding BMS symmetry is a time translation. Conversely, every
time-translation can be represented by the vector field £* & n® in some Bondi
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conformal frame. We will use these facts in the next subsection to simplify
our calculations.

Let us now introduce the Bondi 4-momentum. Given a cross-section C
of T+, the Bondi 4-momentum is a linear mapping from the space of BMS
translations to the space of functions on the phase space I'. It represents
the 4-momentum “left over” at the retarded instant of time represented by
the cross-section C, after allowing for gravity waves to carry away the 4-
momentum for all retarded times in the past of C. Let us begin by introducing
the physical fields that feature in its expression. First of all, because of
asymptotic flatness, the Weyl tensor Crabed of . vanishes at Tt whence
Foabed .— -1 Erabed admits a smooth limit there.?® K* := K abedpyyn g (with
ng = V.§) may be regarded as the “electric part of the Weyl tensor;” in
stationary space-times, its value at It carries the full information about
the 4-momentum of the corresponding isolated system. In the presence of
gravitational radiation, however, the Weyl curvature does not suffice. We also
need an additional field called the Bondi news tensor, Ng. This tensor can be
defined most succinctly in a Bondi conformal frame; we will therefore restrict
ourselves to a Bondi frame throughout what follows. Set S = Ras— %f? Jabs
where Rab is the Ricei tensor of §q, and denote its pull-back to It by sa. It
is easy to show that the tensor field sq, thus defined intrinsically on I%, is
normal to n?. Hence Ny = sap — %smnq””" gab, Where ¢® is any inverse of the
degenerate intrinsic metric ¢ on I, is just the trace-free part of 5. This is
the Bondi news tensor. We can now define the Bondi 4-momentum associated
with any cross-section C of Z+. Given any BMS translation {* = an®, the
corresponding component Py, of the Bondi 4-momentum is given by:

1 @ ac = =4
Piugle] = S ﬁ [ KDy + Lo (Daly) Nea g*°q™) 4%, (5.1)

where I, is the covector field on I+ satisfying [,n® = 1 which is orthogonal
to the cross-section C, D is the pull-back to ZT of the derivative operator
V compatible with the metric §a, and, as before, ¢®* is any inverse of gg.
The positive energy theorems at null infinity ensure us that if we restrict
ourselves to time translations, e.g. by setting & = 1, this integral is always
non-negative, being equal to zero if and only if the space-time is flat in the
future of any partial Cauchy surface whose boundary is C. The value of the
integral, however, depends on the choice of the cross-section; there is leakage
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of the 4-momentum through 7+ because of gravitational radiation. Given any
3-dimensional region A within I+, the total flux F(,){A] of the 4-momentum
that has leaked through A is given by:

i,
F(a)[A] p— ﬁj; (Danof + %CMNab) chqacqbdd?:@. (5.2)

Again, if we restrict ourselves to time translations by setting o = 1, we find
that the flux of energy across A is positive. Finally, given any two cross-
sections C and C' of 7+ bounding a volume A (with, say, ' in the future of
C), the difference between the Bondi 4-momentum evaluated at C and (' is
precisely its flux of through A:

PylC] - P((,)[C’] = Fa)[A]. (5.3)

5.3 Hamiltonians generating BMS translations

With the preliminaries out of the way, we can now apply the covariant
Hamiltonian framework. Qur phase space I' will now consist of vacuum
metrics g, which are asymptotically flat both at spatial and null infinity.
We will thercfore be able to use all the results obtained in the last two
sections. (Ome can consider metrics which are asymptotically flat only at
null infinity, and rederive the null infinity analogs of these results. From
physical considerations, however, it is natural to require asymptotic flatness
in both regimes.) The idea now is to replace the Cauchy surface £ used in the
evaluation of the symplectic structure and generating functionals of canonical
transformations in sections 3 and 4, by the union of a partial Cauchy surface
$ which intersects 7t in a cross-section € and the portion A of It which is
in the past of C (sec figure). Since SU A and T bound a 4-volume in the
physical space-time, given any curl-frce 3-form Ju on M (which admits a
smooth limit to Z* and remains bounded at the point at spatial infinity) we

/ Japedd™e = / Rl (5.4)
E SUA

Using this identity, the action (3.9) of the symplectic structure w on any two

have:

tangent vectors v, and 7, can now be expressed as an integral over SU A.
This expression turns out to be:®

1 an
@17 = g5 [[aTites = YaTored) 70 (5.5)
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= ancqbd{(Tab = %qmnTmn ‘Iab) En('r::'d e %qij'r:j ch)
~ (T = 39" T Gab) LalTed = qij"f':'j ‘ch)} daf’]-

Note that the integrand in the first integral is identical to the one in (3.9);
only the surface of integration has changed from £ to S. The one in the
second integral, on the other hand, is obtained by taking a limit of the
integrand in {3.9) as one approaches I+ and by replacing the terms involving
va and their covariant derivatives by those involving 7, using boundary
conditions satisfied both by g, and v4. Equation (5.5) is the starting point
of our Hamiltonian analysis in the covariant phase space framework.

To begin with, let us note the results which go over unchanged from
sections 3 and 4. Given any vector field £ on M which preserves our
boundary conditions, we can construct the vector field e = Liga on I
Using the presymplectic structure (5.5) and the boundary conditions, one
can again show that ¥ is in the kernel of w if and only if the vector field £°
vanishes on Z*. Thus, the geometric notion of gauge, discussed above, and
the Hamiltonian notion of gauge again coincide. If £* preserves the boundary
conditions but does not vanish on 7, its value on 7t supplics us with a BMS
vector field. The general arguments of section 2 tell us that the corresponding
vector field 74 on I' is an infinitesimal canonical transformation. Its
generating function is the conserved quantity corresponding to the BMS
symmetry singled out by £°.

Let us now restrict ourselves to BMS translations. The simplest case is
that of the time translation corresponding to o = 1 in the given Bondi frame.
Then, on TF, £2 is given just by £€* 2 n®. To analyse the relation between the
infinitesimal canonical transformation 7, on I' and the Bondi 4-momentum,
we use once again equation (4.1), relating -, to its generating functional H..
The first step is to compute the presymplectic inner product between 7,
and an arbitrary tangent vector v,. Using the Geroch-Xanthopoulos results
quoted in subsection 5.1, the first integral in (5.5) becomes:

ws(7, Leg) = %}{ (Ta) 19— Ly(Tan®)] 4%, (5.6a)

while the second yields:

1 - 1 4
wal7, £eg) = ~3% /A(ﬁnTab) Negq™g™d% + E‘?gTachd ¢*g*d%.  (5.6D)
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To obtain the Hamiltonian, we need to integrate, on the phase space I, the
equation: L£,H{g) = ws(7, Leg) + wa (7, £eg), for all tangent vectors 7. In
the case of the ADM 4-momentum, this task was straightforward becaunse
the corresponding equation, (4.2), involved, apart from £ and -y, only those
fields which depend on the fixed, fiducial metric 545 rather than the dynamical
metric gg. Equation (3.6), on the other hand, does contain terms involving
gas. Therefore, it is not straightforward to intcgrate it. However, since
we are in fact interested in the relation between the Bondi 4-momentum
and the Hamiltonian, let us evalnate the directional derivatives of FP,=1[C]
and F(,=1)[A] in the direction of v and compare the results with (5.6). A
straightforward calculation using, again, the Geroch-Xanthopoulos results
yields:

|
Ly Pa=ylC] = jg [(Lora) 1 = LiTan®) + § TasNeaq™ g d*0,  (5.7a)

and

1 )
Ly Flan[Al = 57 / A(C"Tab) Neagq™ d®. (5.7b)

Comparing cquations (5.6) and (5.7), it is clear that, modulo an additive
constant, the Hamiltonian H, we are seeking is given precisely by:

Hi(g) = PlaenlC] + Fa=p)[A], (5.8)

for any choice of the Bondi conformal frame (and of cross-section C of Z%).
Once again, we eliminate the freedom to add a constant to H, by requiring
that its value at the Minkowskian metric be zero. Since (5.8) holds in any
Bondi frame, and since the Hamiltonian H, the Bondi 4 momentum Puslcls
and the flux integral Fi,)[A] are all linear in the BMS translation, it follows
that equality (5.8) in fact holds for all BMS translations. This establishes
our main result. The fact that the result is independent of the choice of the
cross-section C of I+ can be considered as a reflection, in the Hamiltonian
framework, of the identity (5.3).

Finally, note that in space-times which are asymptotically flat at both
null and spatial infinity considered in this section, one can choose vector
fields £€¢ which provide us with asymptotic translations in both regimes. The
generating functional on the phase space I' of the canonical transformation
7., can then be evaluated either using a Cauchy surface ¥ or the union SUA
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of a partial Cauchy surface § and a portion A of Z*. In the first case,
the generating functional emerges as the ADM 4-momentum, and in the
second, as the sum of the Bondi 4-momentum evaluated at C and the total
4-momentum carried away by gravitational radiation through the region A.
Thus, we now have a Hamiltonian argument for the equality between these
quantities. In the literature, there already exists a proof of this result.!®
Farthermore, that proof is rigorous; it involves only differential geormetry and
thus avoids the gaps in the present treatment of functional analysis entirely.
However, from a physical viewpoint, the present Hamiltonian argument is
perhaps more satisfactory. For, it brings out the essential reason behind the
equality: both quantitics are gencrators of asymptotic translations.

6 DISCUSSION

In the last three sections, we have seen how the covariant Hamiltonian
framework can he used to derive useful results in general relativity, results
which are outside the scope of the more familiar 3 + 1 phase space
formulations of the thcory. The framcwork clarifies the role of the space-
time diffcomorphism group, enables one to show that the physical quantities
introduced by Bondi and Sachs at nll infinity do have a Hamiltonian basis,
and establishes the relation between these quantities and those defined at
spatial infinity. Can the framework be used to establish further new results?
It does seem that it is ideally suited to shed light on a long standing question,
that of the “correct” definition of angular momentum at null infinity. The
question is complicated because, in the presence of gravitational radiation,
it becomes impossible to reduce the BMS group to the Poincaré group,
and the notion of angular momentum acquires the so-called supertranslation
ambiguities. Over the years, a number of inequivalent definitions of angular
momentum have been introduced. However, it was slowly realized that most
definitions had certain physically undesirable properties and by now only
one, due to Dray, Streubel and Shaw® has survived the viability criteria
that one can write down on physical grounds. This definition is introduced by
combining in an ingenious way some techniques from the symplectic geometry
of radiative modes of the gravitational field and from Penrose’s twistor theory.
However, the physical basis of this procedure is still somewhat obscure. It

5
$
:'g

[
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is likely that the definition can in fact be derived from the covariant phase
space introduced here. If so, its status would improve substantially.

Thus, it does appear that the framework is likely to have a number
of applications to classical general relativity and more generally, classical
field theories. What is the status of applications to quantum theory? After
all, the Hamiltonian formalism is often used as the point of departure in
certain quantization procedures. For linear field theories, the framework has
already been applied successfully (see e.g. Ref. 6). In the non-linear case,
on the other hand, there are reasons to believe that the framework would
not be as successful. Consider, for example, general relativity. Can one
carry out a quantization of the covariant phase space, using e.g. techniques
from geometric quantization? With this application in mind, the standard
geometric quantization procedure has indeed been modified to accommodate
the degenerate directions of the presymplectic structure.”® What is needed
now, is a certain “constrained polarization” which incorporates within it
the “gauge directions.” However, it has proved to be difficult to introduce
explicitly the necessary structure. It is not yet clear if this is just a technical
difficulty or a reflection of a deeper problem with this approach. Let us
therefore suppose that this is only a technical problem and can somehow be
surmounted. Even in that case, the resulting quantum theory would be rather
uninteresting. For, in order to have a globally well-defined Hamiltonian
vector field, one would restrict oneself right from the beginning to a phase
space I' which contains only “weak” 4-dimensional gravitational fields —
I would have to be just a neighborhood of Minkowski space-time in an
appropriate function space. Quantum mechanics on such a phase space would
not reveal answers to the interesting problems such as the role of quantum
effects near singularitics; the phase space would simply not admit any! if
one were to allow strong fields and space-time singularities, the Hamiltonian
vector fields would be incomplete. It is then likely that quantum evolution
would lead to the same singularities as the classical theory. Thus, roughly, if
one were to carry out quantization using the covariant phase space of general
relativity, the dynamical behavior of the resulting quantum theory would be
essentially governed by that of the classical theory. How do the standard
quantization procedures avoid this fate in quantum field theory? The reason
can be intuitively understood as follows. In the standard description of
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guantum fields, configurations that do not satisfy the classical field equations
have an important role to play. In a quantization scheme based on the
covariant phase space, on the other hand, such configurations have no natural
role. Even in simple systems with a finite number of degrees of freedom, these
limitations are apparent. In the geometric quantization language, quantum
wave functions are “suitably polarized” functions on the classical phase space.
If the phase space consists of classical solutions, there would be no natural
avenue for the genuinely non-classical effects such as quantum tunneling to
occur, effects which we regard as the hallmark of quantum mechanics. It is
very surprising indeed that the Hamiltonian description that seems so well
suited for analysing physical problems of the classical theory should fare
so poorly in the quantum theory. Is there a deep reason underlying this
dichotomy?
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In this paper we review general ideas and results concerning the geometric
“Lagrangian™ approach to conserved currents in field theories, showing
how these results apply to General Relativity and to relativistic field
theories.

1. INTRODUCTION

Although General Relativity is a well established theory of gravity interact-
ing with external matter, after more than seventy years there is yet no general
agreement on the definition of mass and, more generally, of conserved quantities
associated to the gravitational field itself. This open problem was neatly pointed

out by R. Penrose in the introduction to his paper [81] (see also [95]), whereby he



