(-8.20)

(4.14) Theorem

- (i) A function f is use relative to E if and only if $\{\mathbf{x} \in E : f(\mathbf{x}) \ge a\}$ is relatively closed [equivalently, $\{\mathbf{x} \in E : f(\mathbf{x}) < a\}$ is relatively open] for all finite a.
- (ii) A function f is l is l is l is l is l if l is l is

Proof. Statements (i) and (ii) are equivalent since f is use if and only if -f is lsc. It is therefore enough to prove (i). Suppose first that f is use relative to E. Given a, let \mathbf{x}_0 be a limit point of $\{\mathbf{x} \in E : f(\mathbf{x}) \geq a\}$ which is in E. Then there exist $\mathbf{x}_k \in E$ such that $\mathbf{x}_k \to \mathbf{x}_0$ and $f(\mathbf{x}_k) \geq a$. Since f is use at \mathbf{x}_0 , we have $f(\mathbf{x}_0) \geq \limsup_{k \to \infty} f(\mathbf{x}_k)$. Therefore, $f(\mathbf{x}_0) \geq a$, so that $\mathbf{x}_0 \in \{\mathbf{x} \in E : f(\mathbf{x}) \geq a\}$. This shows that $\{\mathbf{x} \in E : f(\mathbf{x}) \geq a\}$ is relatively closed.

Conversely, let \mathbf{x}_0 be a limit point of E which is in E. If f is not use at \mathbf{x}_0 , then $f(\mathbf{x}_0) < +\infty$, and there exist M and $\{\mathbf{x}_k\}$ such that $f(\mathbf{x}_0) < M$, $\mathbf{x}_k \in E$, $\mathbf{x}_k \to \mathbf{x}_0$, and $f(\mathbf{x}_k) \ge M$. Hence, $\{\mathbf{x} \in E : f(\mathbf{x}) \ge M\}$ is not relatively closed since it does not contain all its limit points which are in E.

- **(4.15) Corollary** A finite function f is continuous relative to E if and only if all sets of the form $\{\mathbf{x} \in E : f(\mathbf{x}) \geq a\}$ and $\{\mathbf{x} \in E : f(\mathbf{x}) \leq a\}$ are relatively closed $[or, equivalently, all <math>\{\mathbf{x} \in E : f(\mathbf{x}) > a\}$ and $\{\mathbf{x} \in E : f(\mathbf{x}) < a\}$ are relatively open for finite a.
- **(4.16) Corollary** Let E be measurable, and let f be defined on E. If f is usc (lsc, continuous) relative to E, then f is measurable.

Proof. Let f be use relative to E. Since $\{x \in E : f(x) \ge a\}$ is relatively closed, it is the intersection of E with a closed set. Hence, it is measurable, and the result follows from (4.1).

The results in (4.14)–(4.16) deserve special attention in certain cases. Suppose, for example, that $E = \mathbf{R}^n$ and f is use everywhere in \mathbf{R}^n . Since $\{f > a\} = \bigcup_{k=1}^{\infty} \{f \ge a + 1/k\}$, it follows from (4.14) that $\{f > a\}$ is of type F_{σ} . Since an F_{σ} set is a Borel set, we see that a function which is use (similarly, lsc or continuous) at every point of \mathbf{R}^n is Borel measurable.

3. Properties of Measurable Functions: Egorov's Theorem and Lusin's Theorem

Our next theorem states in effect that if a sequence of measurable functions converges at each point of a set E, then, with the exception of a subset of E with arbitrarily small measure, the sequence actually converges uniformly.

This remarkable result cannot hold, at least in the form just stated, without some further restrictions. For example, if $E = \mathbb{R}^n$ and $f_k = \chi_{\{\mathbf{x}: |\mathbf{x}| < k\}}$, then f_k converges to 1 everywhere but does not converge uniformly outside any bounded set. Again, if the f_k are finite but the limit f is infinite in a set of positive measure, then $|f_k - f|$ is also infinite in this set. The difficulties in these examples can be easily overcome: the missing ingredient in the first case is that $|E| < +\infty$, and in the second, that $|f| < +\infty$ a.e. Adding these restrictions, we obtain the following basic result.

(4.17) Theorem (Egorov's Theorem) Suppose that $\{f_k\}$ is a sequence of measurable functions which converges almost everywhere in a set E of finite measure to a finite limit f. Then given $\varepsilon > 0$, there is a closed subset F of E such that $|E - F| < \varepsilon$ and $\{f_k\}$ converges uniformly to f on F.

In order to prove this, we need a preliminary result which is interesting in its own right.

(4.18) Lemma Under the same hypothesis as in Egorov's theorem, given $\varepsilon, \eta > 0$, there is a closed subset F of E and an integer K such that $|E - F| < \eta$ and $|f(\mathbf{x}) - f_k(\mathbf{x})| < \varepsilon$ for $\mathbf{x} \in F$ and k > K.

Proof. Fix $\varepsilon, \eta > 0$. For each m, let $E_m = \{|f - f_k| < \varepsilon \text{ for all } k > m\}$. Thus, $E_m = \bigcap_{k > m} \{|f - f_k| < \varepsilon\}$, so that E_m is measurable. Clearly, $E_m \subset E_{m+1}$. Moreover, since $f_k \to f$ a.e. in E and f is finite, $E_m \nearrow E - Z$, |Z| = 0. Hence, by (3.26), $|E_m| \to |E - Z| = |E|$. Since $|E| < +\infty$, it follows that $|E - E_m| \to 0$. Choose m_0 so that $|E - E_{m_0}| < \frac{1}{2}\eta$, and let F be a closed subset of E_{m_0} with $|E_{m_0} - F| < \frac{1}{2}\eta$. Then $|E - F| < \eta$ and $|f - f_k| < \varepsilon$ in F if $k > m_0$.

Proof of Egorov's theorem. Given $\varepsilon > 0$, use (4.18) to select closed $F_m \subset E$, $m \ge 1$, and integers $K_{m,\varepsilon}$ such that $|E - F_m| < \varepsilon 2^{-m}$ and $|f - f_k| < 1/m$ in F_m if $k > K_{m,\varepsilon}$. The set $F = \bigcap_m F_m$ is closed, and since $F \subset F_m$ for all m, f_k converges uniformly to f on F. Finally, $E - F = E - \bigcap_m F_m = \bigcup_m (E - F_m)$ and, therefore, $|E - F| \le \sum_m |E - F_m| < \varepsilon$. This completes the proof.

See Exercises 13 and 14 for an analogue of Egorov's theorem in the continuous parameter case; i.e., in the case when $f_y(x) \to f(x)$ as $y \to y_0$.

We have observed that a continuous function is measurable. Our next result, Lusin's theorem, gives a continuity property which characterizes measurable functions. In order to state the result, we first make the following definition. A function f defined on a measurable set E has property $\mathscr C$ on E if given $\varepsilon > 0$, there is a closed set $F \subset E$ such that

(i)
$$|E-F|<\varepsilon$$
,