o Lebesgue ivieasurabie Function (4.14)

usc (Isc, continuous) at every limit point of £ which is in E. The next theorem
characterizes functions which are semicontinuous relative to a set.

(4.14) Theorem

(i) A function f is usc relative to E if and only if {x € E : f(x) > a} is
relatively closed [equivalently, {x € E : f(X) < a} is relatively open]
Jor all finite a.

(i) A4 function f is Isc relative to E if and only if {x€ E : f(x) < a}is
relatively closed [equivalently, {x € E : f(x) > a} is relatively open)
Jor all finite a.

Proof. Statemznts (i) and (ii) are equivalent since f is usc if and only if
—f1sIsc. It is therefore enough to prove (i). Suppose first that f'is usc relative
to E. Given a, let X, be a limit point of {x € E : f(x) > a} which is in E.
Then there exist x, € E such that x, — x, and f(x,) > a. Since f'is usc at X0,
we have f(x,) > limsup,_, , f(x,). Therefore, f(x,) > a, so that XoE{X€ekE:
f(x) > a}. This shows that {x € E : f(x) > a} is relatively closed.

Conversely, let x, be a limit point of E which is in E. If £ is not usc at X,
then f(xo) < + oo, and there exist M and {x,} such that f(x,) < M, x, € E,
X; = Xo, and f(x,) > M. Hence, {x € E : f(x) > M} is not relatively closed
since it does not contain all its limit points which are in E.

(4.15) Corollary A finite function f is continuous relative to E if and only
if all sets of the form {xe E:f(x) > a} and {xe E : f(X) < a} are
relatively closed [or, equivalently, all {x € E : f(x) > a} and {xeE :
S(X) < a} are relatively open) for finite a. '

(4.16) Corollary Let E be measurable, and let f be defined on E. If f is usc
(Usc, continuous) relative to E, then f is measurable.

Proof. Let f be usc relative to E. Since {xe€ E : f(X) > a} is relatively
closed, it is the intersection of E with a closed set. Hence, it is measurable,
and the result follows from (4.1).

The results in (4.14)-(4.16) deserve special attention in certain cases.
Suppose, for example, that E = R" and f is usc everywhere in R". Since
{f>a} = Ui {f = a + 1/k}, it follows from (4.14) that { £ > a} is of type
F,. Since an F, set is a Borel set, we see that a function which is usc (similarly,
Isc or continuous) at every point of R” is Borel measurable.

3. Properties of Measurable Functions:
Egorov’s Theorem and Lusin’s Theorem

Our next theorem states in effect that if a sequence of measurable functions
converges at each point of a set E, then, with the exception of a subset of E
with arbitrarily small measure, the sequence actually converges uniformly.
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This remarkable result cannot hold, at ljsast in the form just stated, wﬁhout
some further restrictions. For example, if £ = R" and fk = Xixilxi <k ; e: nfk
converges to 1 everywhere but doe§ not converge un'xfo.rml).l ogts: eet O};
bounded set. Again, if the f; are finite ‘but ‘the. llml.t fis 1nﬁmte.;§ a]ts. of
positive measure, then | f — f| is also infinite in t‘hIS §et. Tl}e d1. C:;lh 1efs‘lrst
these examples can be easily overcome: the missing 111gred1en['§x Cllr(; ethese
case is that |E| < + 00, and in the seconfi, that | f| < 4+ o0 a.e. ing
restrictions, we obtain the following basic result.

(4.17) Theorem (Egorov’s Theorem) Suppose that {fi} is a .sequentceE oi;
measurable functions which converges almost everywhere in ase ; od
finite measure to a finite limit f. Then given & > 0, there isac ;)set
subset F of E such that |E — F| < and { f,} converges uniformly to
fonF. o

In order to prove this, we need a preliminary result which is interesting 1n

its own right.

l hesis as in Egorov’s theorem, given
4.18) Lemma Under the same hypot ‘
@ en > 0, there is a closed subset F of E and an integer K such that

|E — F| < n and |f(x) — fi®)| < eforxe Fand k > K.

i _For each m, let E, = {|f — fil <e¢ forall k > m}.
Thlﬁfogj,: jnhi’:? ,,,>{|;)"— fil < e}, so that E'T‘ is I.neasurable. CleZatrlyZ, Ef cg
E, .. Moreover, since f; — fae. in E and]fls finite, E,, ./ E.—f 1,ll lS:ha;
Hence, by (3.26), |E,| = |E — Z| = |E|. Since |E| < + o0, 11t”()) ow bt
|E — E,| » 0. Choose mq sO that |E — E,,| < in, and let eac d
subset of E,, with |E,, — F| < in. Then |E — F| <n and |f— fil <e¢
Fif k> m.

Proof of Egorov’s theorem. Given & > 0, use (4.18) -t:.) select closed
F. c E. m = 1, and integers K,, , such that |E — F,| < s?. and | f — fil <
l}nm in I:" if—k >’ K, . Theset F = (\m Fn is closed, and since F < F,, for all
m, fi cgnverges uﬁiformly to f on F. Finally, £~ F = E — lﬂtFmﬂ;3
\j (E — F,,) and, therefore, |E — F| < Y |E — F,| < e. This completes

f. , -
prO(S)ee Exercises 13 and 14 for an analogue of Egorov’s theorem in the

continuous parameter case; i.e., in the case whe_n fygx) - f(x) ztlj y 8 Yo- »

We have observed that a continuous functxon is measE]ra e. Our n X
result, Lusin’s theorem, gives a continuity property which cha;a;:lterl.z;
measurable functions. In order to state the result, we first mak'e the o(gowx g
definition. A function f defined on a measurable set E has property ¢ on
if given ¢ > 0, there is a closed set F < I such that

@ |E-Fl<e



