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Abstract

The purpose of this paper is to prove strong type inequalities with pairs of related weights for commutators
of one-sided singular integrals (given by a Ca@eZygmund kernel with support i-oco, 0)) and the
one-sided discrete square function. The estimate given by C. Segovia and J. L. Torrea is improved for
these one-sided operators giving a wider class of weights for which the inequality holds.
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1. Introduction

Many operators in Real Analysis have one-sided versions for which the class of
weights is wider than the one of Muckenhoupt. It is well known that in Ergodic
Theory there are many situations that require one-sided operators. In this paper we
study one-sided singular integrals and the one-sided discrete square function. A one-
sided singular integral is a Calder-Zygmund singular integral whose keriélhas
support in(—oo, 0) or (0, c0).

In [1], Aimar, Forzani and Marti-Reyes have studied these operators. They proved
that the maximal operators which control them are the one-sided Hardy-Littlewood
maximal operator$1™ andM —, and that the good weights for these operators are the
one-sided weights introduced by Sawyer [12].
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For one-sided singular integrals it is possible to improve many weighted inequalities
in two ways, by putting on the right hand side a smaller operator or by allowing a
wider class of weights for which the inequalities hold (see, for example, [1, 4, 10]).

In this paper we study inequalities with pairs of related weights for commutators of
one-sided singular integrals and the one-sided discrete square function (studied by de
la Torre and Torrea in [15]). Our starting point is the work of Segovia and Torrea, [13].

Throughoutthis paper the leti@mwill denote a positive constant, not necessarily the
same at each occurrence avidwill denote the Hardy-Littlewood maximal function,
Mf(x) = sup,.o1/(2h) ]Xxfhh [f]. If 1 < p < oo, then its conjugate exponent will be
denoted byp’ and A, will be the classical Muckenhoupt's class of weights (see [9]
for finite p and [3] for the definition ofA,.). Finally, given an interval = (x, X + h)
(h>0),thenlt = x+h,x+2h), " =X-h,x), | TT = (x+2h,x+ 3h),....

2. Definitions and statement of the results

DEFINITION 2.1. We shall say that a functiok in L. (R \ {0}) is a Calderon-

loc
Zygmund kernef the following properties are satisfied:

(@) There exists a finite constaBt such thaf S cpgen KO dx| < By, for all ¢ and
all NwithO < ¢ < N, and furthermore, there exists the limit liny- /:s<\x|<l K (x) dx.
(b) There exists a finite constaBi such thatK (x)| < B,/|x|, for all x # 0.

(c) There exists a finite constaBt such thaiK (x — y) — K (x)| < Bsy||x| 2, for

all x andy with |x| > 2]y|.

Given a Caldesn-Zygmund kerneK, the singular integral associated ko is
defined by

TIX) = / Kx —y) f(y)dy,
R

in the principal value sense. A one-sided singular integralrespectivelyT 7) is a
singular integral associated to a CafuleiZygmund kerneK with support in(—oo, 0)
(respectively(0, c0)); therefore, in that case,

THf(x) = Iirr&/

X+

o0

Kx =y f(y) dy.
An example of such kernels Is(x) = sin(log |X|) /(X109 |X|) X(—c.0) (X) (S€€ [1]).

DEerFINITION 2.2. For f locally integrable, we define the one-sided discrete square
function applied tof by

1/2
SHf(x) = <Z|Anf<x>— An1f<x)|2) :

nez
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whereA, f (x) = (1/2") [*%" f(y) dy.

It is not difficult to see thaS" f(x) = |[UT f(X)||,2, whereU™ is the sequence
valued operator

2.1) U t00 = [ Hoc-y oy,
R
where
1 1
(2.2) HX) = {5)((2",0) (X) — FX(ZM.O)(X)}
nez
(see [15]).

DEFINITION 2.3. Let T+ be a one-sided singular integral with kerr€land let
S™ be the one-sided discrete square function. For an approfirjate define the
commutator off * and S by

T () = / (b(x) — b(y)) K (x — y) F(y) dy = BT+ £ (x) — T+ (bF)(%)

and

S fx=

’

(2

f (b() — by)H(x — y) f () dy
R

whereH is as in (2.2).
DEFINITION 2.4. The one-sided Hardy-Littlewood maximal operatdrs andM ~
are defined, for locally integrable functioris by
1 x+h l X
M*f(x):sup—/ |f| and M~ f(x) = sup- [ f].

h>0 h h>0 h x—h

The good weights for these operators are the one-sided wefghtnd A,

(AY) sup

1 b c : p-1
W P <00, l<p<oo;
a<b<c (C_ a)p a b

(A)) M~ w(X) < Cw(x) a.e.

There exist positive numbe@ and§ such that for all numbera < b < ¢ and all
measurable sefs c (b, ¢),

8
(AL) 1Bl ¢ (wﬁE)> .
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It is known (see [8]) thatAf, = (J,., A}. The classes\; are defined in a similar
way. (See [7, 8, 12] for more definitions and results.)

Itis proved in [1] and [15] respectively thatdf € AJ, 1 < p < oo, thenT* and
St are bounded fronk.P(w) to LP(w) and that, ifo € A], thenT* and St are of
weak-type(1, 1) with respect taw.

DEFINITION 2.5. Letb € LY(R) andv € A,.. We say thab € BMO, if

1
Ibllemo, = sup—— [ [b—by| < oo,
v J,y
wherel denote any bounded interval abd= (1//1]) f, b. (Observe thatii = 1
then we get the classical BMO space.)

Now we are ready to establish our main results.

THEOREM2.1. Letl < p < o0, « € Ay, B € Al v = (a/B)P € A, and
b € BMO,. LetK be a Caldedn-Zygmund kernel with support {r-oco, 0) and let
T+ be the one-sided singular integral associatedtoThen, there exist€ > 0 such
that [, |T," |8 < C [ | f|Pe, for all boundedf with compact support.

THEOREM2.2. Letl < p < 00, @ € Ay, B € Aj, v = (a/B)YP € A, and
b € BMO,. Then, there exist€ > 0 such thatf, |S f|°P8 < C [, | f|Pe, for all
boundedf with compact support.

REMARK. The result of Theorem 2.1 for two-sided CalgleiZygmund singular
integrals is due to Segovia and Torrea [13]. They proved the boundedness ob@alder
Zygmund singular integrals fromP(«) to LP(B) for botha, g € Ap. (Their result is
highly more general, it is applied to many other operators. For the Hilbert transform,
see Bloom [2].) The improvement in Theorem 2.1 for one-sided singular integrals is
that it takes into consideration a wider class of weights. TaRgirgA?, one improves
not only in the left hand side of the inequality, but also in the right hand side, by
noticing the fact thatr = vPg gives

/|Tb+f|pﬂfc/|f|pa=0/|fv|pﬁ.
R R R

An example that our class of weights is wider is the following: &ét) = 1 for

X < landa(x) = x*for x > 1, where—1 <s < p—1;setg(x) =1forx <1land

B(X) = xP~1forx > 1. Thenp ¢ A, since itis nondecreasing, bgt¢ A,. On the
other handg € A, andv = («/B)YP € A, C A.. We suspect that Theorems 2.1
and 2.2 hold fow € AJ,;, for this is what is needed in their proofs (see, for instance,
the last step in the proof of Theorem 2.1). However, one of the key points to prove
those theorems is Lemma 3.3, and there, what is needed is, precisely, 4hm;.

That is why we requirec € A,.
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3. Preliminaries

We introduce some further definitions and results that we need to prove the main
results.

DEFINITION 3.1. Letg > 0O be a locally integrable function (that ig,is a weight).
We definethe maximal operatoM by

1 x+h
M*f(x) =su —/ flg.
§ 100 =supore | 1110

It is proved in [7] that for a weight ands > 1, M is bounded fromL®(u) to
L3(u) ifand only ifu € Af(9):

1/

1 b s 1 c
+ 1-8' s
(AL (@) sup <—fa°g/a U> (f:gfb u—g ) < oo.

DerINITION 3.2. Let f be a locally integrable function. Thene-sided sharp
maximal functioris defined by

1 x+h x+2h +
fer (X) = sup- (f(y) — = f) dy.

h>0 X h x+h
Itis proved in [6] that

X+2h

1 X+h
(3.1) fur(X) < SUping‘gﬁf (fyy —a)"dy+ E/ (a— f(y)*dy
h>0 a€ X

xX+h
< C| f|lamo-

Another result that will be used often is the following ([6, Theorem 4])w iE AJ
andM* f € LP(w), then [, (M* f)Pw < C [ (fs+ 1) w.

DerINITION 3.3. Let 1< r < oo. We say that a weight belongs to the class
RH* if there existsC such that for any < b

b b
/ o' < C(M(w)aa,b))(b))rl/ w.

The definition ofRH" is the expected one. (See [5] and [11] for more definitions
and results.)

Itis proved in [8] thatw € A if and only if there exists > 1 suchthato € RH".
Something more can be said: df € A} thenw' P € A;; as a consequence, there



6 M. Lorente and M. S. Riveros [6]

exists§ > 0 such thatw®® € RH_,. If we takes = 1+ p/(pP'(1+9)) =
(p+9)/(1+38), thenw € Ay, foralls < g < p (see the proof of Proposition 3 in
[5D).

In order to prove the main theorems we still need four preliminary results that we
are going to establish and prove now.

LEMMA 3.1. Letl < p < oo and letg € A;. Then, there exists > 0 such that
forallr withp' <r < p(1+6),8 P e A".

PROOF. Sincep € A, there exists > 0 such thap /P = g7 € RH,,. Letr
be such thap’ <r < p'(1+ 8). By Holder’s inequality we havg="/P ¢ R Hp-
Let us prove thapp~"/P € A-. Considera < b < ¢ < d such thatd — ¢ =

c— b =b— a. Then, Hlder’s inequality and the facts that?/? ¢ R H,, (see[11,
Lemma 2.5]) angg € A give

d 1/r b 1r’
1 /ﬁf/P 1 /IBF(lf’)/D
b—a /. b—al,
1 d , /l/r 1 b 1/p
C —P'/P\r/P
c(e=a ) (5= %)
1 c ) 1p 1 b 1/p
—-p'/p
=c(g=af#") (5=af#) =c

By [11, Lemma 2.6], this finishes the proof of Lemma 3.1. O

LEMMA 3.2. Letl < p < oo and letg € AJ. Then there exists > 0 such that
forallr with p' <r < p'(146), 8 € A}, (B"/P).

PrROOF. As before, there exist > 0 such that3—P/? ¢ RH.,,; and, as we have
noticed abovep € A, for all g in the ranges = 1+ p/(p'(1 +6)) < g < p.
Therefore, for such thatp’ <r < p'(1+ 68), we have8 € A}

1+p/r-
We have to prove that € A}, (8"/P), that is,

b c —p/r’
I ( / ﬁr’”’) (c—b)* <,
a a
foralla <b < c.

So, leta < b < ¢. Then, since-p/r’ < 0, we have

()



[7] Two weight inequalities for commutators

On the other hand, usingdttier’s inequality with exponenis, r’), we get

1—<C_b/bﬂ o) < (=5 [ p0) (=5 [ 7)) -

This implies that

c —p/r’ c p/r
(33) ( f ﬁf’“’) s(c—b)p( f ﬁ”") .
b b

Putting together inequalities (3.2) and (3.3) and using the factahatA[, , ,, we
obtain

b c —p/r b c p/r
/ B (/ IBT’/P> (c— b)(p—r’)/r’ < / B (/ Ig—r/P> (c— b)(P—r’)/r’—P
a a a b

<C(c— a)1+p/r(c _ b)(D*r’)/r’*P.
If c—b>b—awe have
C(c— a)l+p/r(c _ b)(p—r’)/r’—P <C(c— b)1+P/r+(p—r’)/r’—p =C,

and we would have finished the proof.

In the case that — b < b — a we partition the intervala, c] by pointsx, = a <
Xg < -+ < Xp < b < X1 < Xpp2=c¢,suchthatx,,, —x, =c—b,i =0,1,...,n.
Therefore, foii < n, we have

Xit1 , Xi+2 p/r’
,B(C _ b)(p*r )/ < (/ ,Br /p)
Xi Xi

and, sincéb — x, < c— b,

b c p/r’
/ B(c— b)(pff')/r’ < (/ IBF'/D> )

Thus,

Xit1

b n
/ ple—p)* < / B(c— )P
a i=0 VX

n Xit2 p/r’ c p/r’
S )=o)
i=0 Xi a

which finishes the proof of Lemma 3.2. O
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LEMMA 3.3.Letl < p < o0, @ € Ay, € Al v = (¢/B)"P € A, and
b € BMO,. Then, there exists > 0 so that, for allr with p’ <r < p’' +¢,

/|b— b ['a™/P < C/ BP.
| I+

PROOF By [13, Lemma 2], there exists > 0 such that for alr in the range
pP<r<p+ea'/PeA. Letusfixsuch andtakes > 1suchthatr /P ¢ RHs.
It then follows that

1/s 1/s
(34) if|b—bl|foﬂ”’ < (iﬁb—blﬁ) (i/afsvp>
I, 1, i,
1/s
5c(i/|b—bl|f5) i/af/p
I i
<o () i
ERANITTIVARTII;

The last inequality is a consequence of John-Nirenberg's inequality (see the proof of
Proposition 6, [14, Chapter III]).
Now, we use Hlder’s inequality and the facts thate A, Cc Al anda™"/P €

A, C A', to obtain
”) m / @t

v(OD\" 1 [ < 1
(3:5) (W) 1 ! (T
i r/ r/ —r/
(I p) |I|/ﬁ p|l|/ i
l r
m/’B /p

Putting together inequalities (3.4) and (3.5) we obtain the desired result. [

LEMMA 3.4. Suppose that we are under the same hypotheses of L&3mhet
x e R,h> 0,1 e Nandletl = (x,x+2'h). Fork e N, letl, = (x+2h, x4 21h).
Then, there exist€ > 0independent of, h, | andk such that

1
b, — b, | <Ck max —

I-1<j<k-2 [ l}]

PrROOF Letk € N, k > |. We shall estimatéh, — b, |. Clearly,

k-1
(3.6) oy — by | < |by —b|.|+Z|b|j — byl

=l
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For the first summand on the right hand side, we observe that iBMO,, then there
existsC such that

1
(3.7) ;Iﬁﬁm—mqsc,

forany intervall. In fact, this sort of estimate, for all, characterizes théte BMO,,
as well as this other one

1
v(Jd) Jyus+

Consequently, sinck = |+, we get

(3.8)

b —b;:| < C.

1 1
|b, —b|,|§Cmv(I)§Ck max —

v
I-1<j<k-2 || 1

For the rest of the sum, we note that, O I;, then the above remark and the fact that
v e A, give

k—1 -1
|

k—1 Kk
1 (1) v(lj-o) |1l

b—b 1§C —l)l- =C
%y" ol j:.lljl(J) Ejvuko|n4||m

j=

k—1 1 1
SCZ v<Ck max — [ v. 0
i il i sz 1] ),

4. Proof of the results

PrROOF OF THEOREM 2.1. The following pointwise estimate is the key to prove
Theorem 2.1. We claim that there exdst> 0, 5, > 0 andq > 1 such that for alf

in the range
(—p) <t <min {1 0'(1+ 8y, (—p> 1+ 52)} ,
q q q
the following inequality holds

, 1/qr’
@D D00 =] (M0 11700)

1/r

+ (ML 0T E00) " Mo ool

for all boundedf with compact support.
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Let us prove this claim. We have

Xx+2h
(.2) (T F)a) = Csupint 1 [T, 1)~ cldy.

h>0 ¢€

Letx € R andh > 0 be fixed. Set = (x,x+h),J = (x,x+8h), f; = fyx;,
f,=f — fyandC; = [, K(x + 2h — 2)(b; — b(2)) f.(2) dz Observe that

Tb+f<y>=/<b<y>—bJ+bJ _bt)K(y —t f ) dt
R

= (b(y) —by)T* f(y) — /(b(t) —by)K(y —t) f(t)dt
R
= (b(y) —by)Tf(y) = T*((b—by) f)(y) — TT((b — by) f2)(y).
Thus,

1 x+2h 1 x+2h
@3y [ mry-cidy=g [ by)-biliT fldy
g 1X X+2h
+ H/ IT+((b = by) By (vl dy

l X+2h
+ ﬁ/ T+((b— by) f2)(y) — Col dy
=14+14+1.

By Lemmas 3.1-3.3, there exists > 0 such that for alf in the rangep’ <r <

P'(1+68y), it holds thatg /P € A", B € A} . (B"/P) and

f b—byaP <C / pile,
| |+

Letq > 1, close enoughto 1, suchthiit e A7, B € Al and(p/q) < p'(1+681)/9.

Therefore, since8 € A}, there existsl, > 0 such that, for alr in the range

(p/9)" < (p/9)' (1 + 8,), it holds thatB € A;/qr,(ﬁqr'/p). Letr be such that

(g) < < min i%p’(l—k&), (g) (l+82)}.

Then, by Hlder’s inequality and the above remarks,

1 [xt8h 1r 1 [xt8h o
(4.4) | < —/ Ib—by['a™P —f T e /P
h J h Jx
1 X+16h r 1 X+8h 1/r’
<c (— [ e (— [ wTeerg
h x+8h h X

1/r
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X+8h ) X+8h
SC</ ﬁr/p> (/ |UT+f|r’ﬁr'/p>

<c(Mp, T 00)

—1/r’ 1/r’

To control Il, we observe that, since

p’ P\’ (1 P\’
—<p<|=) <r<min{=p'A+36), (—) (1+5)},
q P <q> iqp " \q ?

we havep’ <rq < p'(1+38;1). Then, Hlder's inequality, the fact that* is bounded
from L9(dx) to L9(dx), Lemma 3.3 and the fact that 9"/ € A~ give

1 x+2h . /a
(4.5) Il < (H/ T ((b—bJ)fl)(y)l“dy>

l X+8h 1/q
<C(h/ lb—mmﬂﬁ

X+8h /qr 1 [xt8h 1/qr
<C |b — by |qra—qr/p - / | f Iqr’aqr’/p
h Jx
x+16h 1/ar 1 [pxen 1/qr
<C ( ,qu/p> (_/ | fv|qr’ﬂqr’/p>
x+8h h X
x+8h —=1/qr’ 1 x+8h 1/qr
SC( ,qu/p> (H/ |fv|qr ngr/p>
X

rr

(ﬂwauwwxm)

Next, we use condition (c) of the kernel to obtain
1 x+2h
(4.6) Il = = / /(b(z) — b)) (K(y—2) — K(Xx+2h—2)f(2)dz

x+2h X+2h y
=¢ b(z) — by|[f(2)|dzd

x+2h 00 x+2K+t1h
Ib2) — by
<c> / h :/ BB 4)dzd
) ") Gorane PIEY

dy

2k+1

<Ch§jag—3§ﬁzﬂl/|ma by| | ()] dz

i ok+1 1
|b(z) —b,||f(2)|dz
— — 2)2 2k+1h
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= 2t 1
"’CZ—( 2)22k+1h| bJ|/|f(z)|dz_IV~|—V
k=3

To estimate |V, we introduce a modified version of Lemma 3.3. # (x, X + h),
we denote by 2 the interval(x + h/2, x + h). Itis very easy to prove that Lemma 3.3
holds changindy, by b;.. Consequently, arguing as in the estimate of I, and using
this version of Lemma 3.3, we get

k+1
2k+1 1 X+2"*h

(4.7) IV<C Z & 277 Ib(z) — b, || f(2)]dz

I'/

=c(m ﬂqr/p(|fv|‘“><x>)

Now, let 1, be such that

1 1
max — V= Vv
2=j=k=2 [1;] Jyy;, Higol iy

Then, for alls € I, we have

1 1 x+2¢1h
48) o [ It@ldzs o [ if@laz
1 x+2<1h

This conclusion and Lemma 3.4 give us

2k+l
(4.9) V< CZ(Zk 27 “J(k)'/ 2k+lh/|f(z)|dz

k2Kt 1 )
SCZ(ZK I lj(k)v(s)M f(s)ds
k+1
<CM+(UM+f)(X)Z(2k Z)Z—CM+(VM+f)(x).

In the last inequality we have used

2 X421 (0+1
VMY < — vMTf.
2ik0+1 |

a0l Jig

Collecting all these inequalities, we complete the proof of (4.1).
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Next, we are going to prove that we can apply [6, Theorem 4], that is, we have to
prove thatM*(T,F f) € LP(B). SinceB € A}, it suffices to show thaf," f € LP(B).
If bis bounded, theb € L>*° ¢ BMOand, by a result in [4],

/|Tb+f|p,3§C/|f|p,3<oo.
R R

In the general case, léf, = bif —-m<b <m, b, =mif b > mandb, = —mif
b < —m. Then, it is not difficult to see thdt, € BMO, and||bn|lswo, < ClIbllamo, ,
with C independent of. Then, for eaclby,, we have

/|Tb1f|pﬁsc/|f|pﬁ,
R R

with C independent om. Using now the dominated convergence theorem, we get
that {b,, f} converges tdf in L(dx), asm tends to infinity and, sincd * is of

weak type(l, 1) with respect to the Lebesgue measuf€; (b, f)} converges to
T*(bf) in measurgédx). Therefore, there exists a subsequence that converges almost
everywhere. We shall continue denoting this subsequenfEt¥., f)}. Onthe other
hand,{b,T* f} converges toT* f almost everywhere. Then, by Fatou’s Lemma,

/|Tb+f|Pﬁ:/ lim [T, f|°8
R IRm%oo
< Iiminf/|benf|pﬂ 50/ [ f|PB < oo.
m—o00 R R

As a consequence, [6, Theorem 4] gives that

/ITb+f|p/3 =< /(M+(Tb+f))pﬁ =< C/((Tb+f)#,+)p/3-

R R R

Now, using (4.1), we get

, 1\ p/ar’
[ e <c [ (Mp,at)" s
R R

e [ (M) pe [ mromeng
R R
=14+ 4+1.

Sincep € A} . (89/P), it follows that

| < C/u Fo]oryPlar g — C/ I |Pa
R R
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and
I gc/(|uT+f|f’)P/f’ﬂ:c/ IT* f|Pa §C/|f|”a,
R R R

sincea € A, C A,
Finally, using thap € A} and using again that € A, C AJ, we get

1 5C/(vM+f)p,8=C/(M+f)pozSC/Iflpa. O
R R R

PROOF OFTHEOREM2.2. This proof follows the same pattern as the preceding one.
As above, the essential step is the pointwise boundedness of the one-sided sharp of
the operator. In this case we claim the following: Bet- 0,6, > 0 andq > 1 be as
in the proof of Theorem 2.1. Assume also thyas close enough to 1 to ensure that
a € Apq and that, is such that the conclusion of [13, Lemma 2] holdsdet p's;.

Then, for allr in the range

p !/ ] 1 p !/
— ] <r <miny— ’(1+5),(—) (1+8)},
<Q> iq PETAY ’
the following inequality holds

, 1/qr’
(4.10) (§ Dur(x) =C {(M;,//pq fol)(0)

+ (M08 1100) "+ M w0 |

for all boundedf with compact support.
Let us prove the claim. Let € R andh > 0. Leti € Z be suchthat2< h < 2'+1,

Set] = (X, X+2i+3), fl = fXJ, f2 =f- f]_ andCJ = S+(b_bJ) fz(X). As above,
we have

1 x+2h 1 x4+21+3
@1 o[ ISt -Cldy=p [ by - bilIS Ty
1 X423
tn [ 1S @-bmidy

1 X423
+ﬁ/ |ST((b — by) f2)(y) — Cyldy
=1+I114+1.

Clearly, 1 and Il are estimated as in the proof of Theorem 2.1.
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LetU* beasin (2.1). Then

1 x+2113
(4.12) 1= H/ [IU*((b = by) f)(Wlee — U (b — by) f)(X) [l 2| dy
x+21+3
<t IU*((b— by) f2)(y) — U*((b — by) f2)(X) |2 dy.

If His asin (2.2), then
(4.13) [U*((b—by) f2)(y) — U™ ((b—by) f2)(X) 2

S/ Ib(t) —by[ [TMOIIHY —t) = HXX = )]l dt
X+2i+3
x+2k+

< Z/ lbt) — by [ FONHY —t) — H(X = )]l dt
k=i+3 Y x+2
[e] X4-2Kk+1
+Z|b|k—b3|/ [fOIIHY —t) = HX = )]l dt
k=i+3 x+2¢

=IV+V.
By Holder's inequality with exponenig, g’) and(r, r’),

e 1/q
4.14 IV < |b —b k|qa—q/pO[Q/P| f |q>
( ) Z ( Ik |

k=i+43

/ 1/q
x (/ IH(y— 1) — H(x—t)n;ﬂzdt)
Ik
00 1/qr , / 1/qr’
<) ( |b—blk|qra‘“/°> (/ | fo ﬁ‘“”’)
k=i+3 Wl I

) g’
X(/ ||H(y—t)—H(x—t)||?2dt> :
Ik

Then, by Lemma 3.3 and the fact that?"/? € A",

X2+ 1/qr 2K+ L/ar
(4_15) (f b — b|k|Qra—qr/p) <C (/ IB—qr/P>
x+2¢ X+2k+1
x+2k+L —lar
< C(zk)l/q (/ ngr’/p> .
X+2%

Putting together inequalities (4.14) and (4.15), we obtain

(4.16) IV < C Y @97 (Ma, (o) 00)

k=i+3
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RN
x(/ ||H<y—t>—H(x—t>||;Ldt) .
Ik

It is proved in [15, Theorem 1.6] that the kerri¢lsatisfies

) a' 2i/d
(4.17) (/ [H(y —t) — H(X — t)||?2dt> < C—2k :
Ik

Inequalities (4.16), (4.17) and the fact thaf", , ,(2)/92/9 /2« = C, give

qr’

IV = C (M, (I ol )(X))

Now we observe that Lemma 3.4 yields

7

(4.18) |b, —b;] < C(k—1i) max —/ v=Ck-—1i)
3<j<k-2 || ||1(k)| lido

Slnce|k = (X —|— 2i Zk*i , X + 2i 2k7i+l)-
On the other hand, for all € 1),

1/q 1 x42k+L
wig  ([ir) sc@ ([ i

< C@HYI(M*(1f192)"".

1/q

Taking into account inequalities (4.18), (4.19) and using agaidét’s inequality and
(4.17), we get

V<CZ(k—|)

1/q
d(frrr)
k=i+3 |IJ(k)| I Ik
RN
< (/ IH(y —t) - H(x—t)n;ﬂzdt)
Ik

o ky1/q9i/
<C Y (k—i )% |1 v(@) (M*(1f1)(2)""dz
k=i+3 Migol Jijw
ky\1/q9i/
<C Z(k—u(z) 2 M M )00

k=i+3

= CM* (M (| F1T)Y) ().

Our next task will be to prove that [6, Theorem 4] can be applied in this setting.
Assuming it for the moment, we obtain

/ 1§ fIPB < C/((SJf)#,+)”ﬂ,
R R
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which ensures the desired result having into consideration inequality (4.10) and the
choice ofr, t ands.

Let us prove now that [6, Theorem 4] can be applied & L, the result in [15]
gives

/|§*f|pﬁ§C/|bS+f|pﬁ+C/|S+(bf)|”,3
R R R

SCIIbIIL’O/ Iflpﬂ+C/ Ibf(°B SCIIbIIL’O/ [f1°B < oo.
R R R

Thus, the above argument works and we obtain

/I%*flpﬁSC/Ifl”ot-
R R

In the general case, takg, as in the proof of Theorem 2.1, and obtain

/|Sbtnf|pﬁsc/|f|pa
R R

with a constan€ notdepending om, sincel|by|lsmo, < ClIbllemo,- Now, an argument
similar to the one used in the proof of Theorem 2.1 shows that, a subsequé¢B¢efof
converges t& f a.e., so by Fatou’s Lemma again,

/|$f|pﬁgliminf/|5‘btnf|pﬂ§C/|f|poz,

which finishes the proof of Theorem 2.2. O
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