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Abstract

The purpose of this paper is to prove strong type inequalities with pairs of related weights for commutators
of one-sided singular integrals (given by a Calderón-Zygmund kernel with support in.−∞; 0/) and the
one-sided discrete square function. The estimate given by C. Segovia and J. L. Torrea is improved for
these one-sided operators giving a wider class of weights for which the inequality holds.
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1. Introduction

Many operators in Real Analysis have one-sided versions for which the class of
weights is wider than the one of Muckenhoupt. It is well known that in Ergodic
Theory there are many situations that require one-sided operators. In this paper we
study one-sided singular integrals and the one-sided discrete square function. A one-
sided singular integral is a Calderón-Zygmund singular integral whose kernelK has
support in.−∞; 0/ or .0;∞/.

In [1], Aimar, Forzani and Mart´ın-Reyes have studied these operators. They proved
that the maximal operators which control them are the one-sided Hardy-Littlewood
maximal operatorsM+ andM−, and that the good weights for these operators are the
one-sided weights introduced by Sawyer [12].
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c© 2005 Australian Mathematical Society 1446-7887/05$A2:00+ 0:00

1



2 M. Lorente and M. S. Riveros [2]

For one-sided singular integrals it is possible to improve many weighted inequalities
in two ways, by putting on the right hand side a smaller operator or by allowing a
wider class of weights for which the inequalities hold (see, for example, [1, 4, 10]).

In this paper we study inequalities with pairs of related weights for commutators of
one-sided singular integrals and the one-sided discrete square function (studied by de
la Torre and Torrea in [15]). Our starting point is the work of Segovia and Torrea, [13].

Throughout this paper the letterC will denote a positive constant, not necessarily the
same at each occurrence andM will denote the Hardy-Littlewood maximal function,
M f .x/ = suph>0 1=.2h/

∫ x+h

x−h | f |. If 1 ≤ p ≤ ∞, then its conjugate exponent will be
denoted byp′ and Ap will be the classical Muckenhoupt’s class of weights (see [9]
for finite p and [3] for the definition ofA∞). Finally, given an intervalI = .x; x + h/
(h > 0), thenI + = .x + h; x + 2h/, I − = .x − h; x/, I ++ = .x + 2h; x + 3h/; : : : .

2. Definitions and statement of the results

DEFINITION 2.1. We shall say that a functionK in L1
loc.R \ {0}/ is a Caldeŕon-

Zygmund kernelif the following properties are satisfied:

(a) There exists a finite constantB1 such that
∣∣ ∫

"<|x|<N K .x/ dx
∣∣ ≤ B1, for all " and

all N with 0< " < N, and furthermore, there exists the limit lim"→0+
∫
"<|x|<1 K .x/ dx.

(b) There exists a finite constantB2 such that|K .x/| ≤ B2=|x|, for all x 6= 0.
(c) There exists a finite constantB3 such that|K .x − y/− K .x/| ≤ B3|y||x|−2, for

all x andy with |x| > 2|y|.
Given a Caldeŕon-Zygmund kernelK , the singular integral associated toK is

defined by

T f .x/ =
∫
R

K .x − y/ f .y/ dy;

in the principal value sense. A one-sided singular integralT+ (respectivelyT−) is a
singular integral associated to a Calderón-Zygmund kernelK with support in.−∞; 0/
(respectively.0;∞/); therefore, in that case,

T+ f .x/ = lim
"→0+

∫ ∞

x+"
K .x − y/ f .y/ dy:

An example of such kernels isK .x/ = sin.log |x|/=.x log |x|/�.−∞;0/.x/ (see [1]).

DEFINITION 2.2. For f locally integrable, we define the one-sided discrete square
function applied tof by

S+ f .x/ =
(∑

n∈Z
|An f .x/− An−1 f .x/|2

)1=2

;
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whereAn f .x/ = .1=2n/
∫ x+2n

x f .y/ dy.

It is not difficult to see thatS+ f .x/ = ‖U+ f .x/‖`2, whereU+ is the sequence
valued operator

U+ f .x/ =
∫
R

H.x − y/ f .y/ dy;(2.1)

where

H.x/ =
{

1

2n
�.−2n;0/.x/− 1

2n−1
�.−2n−1;0/.x/

}
n∈Z

(2.2)

(see [15]).

DEFINITION 2.3. Let T+ be a one-sided singular integral with kernelK and let
S+ be the one-sided discrete square function. For an appropriateb, we define the
commutator ofT+ andS+ by

T+
b f .x/ =

∫ ∞

x

.b.x/− b.y// K .x − y/ f .y/ dy = b.x/T+ f .x/− T+.bf /.x/

and

S+
b f .x/ =

∥∥∥∥
∫
R

.b.x/− b.y//H.x − y/ f .y/ dy

∥∥∥∥
`2

;

whereH is as in (2.2).

DEFINITION 2.4. The one-sided Hardy-Littlewood maximal operatorsM+ andM−

are defined, for locally integrable functionsf , by

M+ f .x/ = sup
h>0

1

h

∫ x+h

x

| f | and M− f .x/ = sup
h>0

1

h

∫ x

x−h

| f |:

The good weights for these operators are the one-sided weights,A+
p andA−

p

sup
a<b<c

1

.c − a/p

∫ b

a

!

(∫ c

b

!1−p′
)p−1

< ∞; 1< p < ∞;(A+
p )

M−!.x/ ≤ C!.x/ a.e.(A+
1 )

There exist positive numbersC andŽ such that for all numbersa < b < c and all
measurable setsE ⊂ .b; c/,

|E|
c − a

≤ C

(
!.E/∫ b

a !

)Ž
:(A+

∞)
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It is known (see [8]) thatA+
∞ = ⋃

p≥1 A+
p . The classesA−

p are defined in a similar
way. (See [7, 8, 12] for more definitions and results.)

It is proved in [1] and [15] respectively that if! ∈ A+
p , 1< p < ∞, thenT+ and

S+ are bounded fromL p.!/ to L p.!/ and that, if! ∈ A+
1 , thenT+ and S+ are of

weak-type.1; 1/ with respect to!.

DEFINITION 2.5. Letb ∈ L1.R/ and¹ ∈ A∞. We say thatb ∈ B M O¹ if

‖b‖BMO¹ = sup
I

1

¹.I /

∫
I

|b − bI | < ∞;

where I denote any bounded interval andbI = .1=|I |/ ∫I b. (Observe that if¹ = 1
then we get the classical BMO space.)

Now we are ready to establish our main results.

THEOREM 2.1. Let 1 < p < ∞, Þ ∈ Ap, þ ∈ A+
p , ¹ = .Þ=þ/1=p ∈ A∞ and

b ∈ BMO¹ . Let K be a Caldeŕon-Zygmund kernel with support in.−∞; 0/ and let
T+ be the one-sided singular integral associated toK . Then, there existsC > 0 such
that

∫
R |T+

b f |pþ ≤ C
∫
R | f |pÞ, for all boundedf with compact support.

THEOREM 2.2. Let 1 < p < ∞, Þ ∈ Ap, þ ∈ A+
p , ¹ = .Þ=þ/1=p ∈ A∞ and

b ∈ BMO¹ . Then, there existsC > 0 such that
∫
R |S+

b f |pþ ≤ C
∫
R | f |pÞ, for all

boundedf with compact support.

REMARK. The result of Theorem 2.1 for two-sided Calderón-Zygmund singular
integrals is due to Segovia and Torrea [13]. They proved the boundedness of Calderón-
Zygmund singular integrals fromL p.Þ/ to L p.þ/ for bothÞ, þ ∈ Ap. (Their result is
highly more general, it is applied to many other operators. For the Hilbert transform,
see Bloom [2].) The improvement in Theorem 2.1 for one-sided singular integrals is
that it takes into consideration a wider class of weights. Takingþ ∈ A+

p , one improves
not only in the left hand side of the inequality, but also in the right hand side, by
noticing the fact thatÞ = ¹ pþ gives∫

R

|T+
b f |pþ ≤ C

∫
R

| f |pÞ = C
∫
R

| f ¹|pþ:

An example that our class of weights is wider is the following: SetÞ.x/ = 1 for
x ≤ 1 andÞ.x/ = xs for x > 1, where−1< s < p − 1; setþ.x/ = 1 for x ≤ 1 and
þ.x/ = x p−1 for x > 1. Thenþ ∈ A+

p since it is nondecreasing, butþ =∈ Ap. On the
other hand,Þ ∈ Ap and¹ = .Þ=þ/1=p ∈ A2 ⊂ A∞. We suspect that Theorems 2.1
and 2.2 hold forÞ ∈ A+

p , for this is what is needed in their proofs (see, for instance,
the last step in the proof of Theorem 2.1). However, one of the key points to prove
those theorems is Lemma 3.3, and there, what is needed is, precisely, thatÞ ∈ A−

p .
That is why we requireÞ ∈ Ap.
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3. Preliminaries

We introduce some further definitions and results that we need to prove the main
results.

DEFINITION 3.1. Letg ≥ 0 be a locally integrable function (that is,g is a weight).
We definethe maximal operatorM+

g by

M+
g f .x/ = sup

h>0

1∫ x+h

x g

∫ x+h

x

| f |g:

It is proved in [7] that for a weightu ands > 1, M+
g is bounded fromLs.u/ to

Ls.u/ if and only if u ∈ A+
s .g/:

sup
a<b<c

(
1∫ c

a g

∫ b

a

u

)1=s(
1∫ c

a g

∫ c

b

u1−s′
gs′

)1=s′

< ∞:(A+
s .g/)

DEFINITION 3.2. Let f be a locally integrable function. Theone-sided sharp
maximal functionis defined by

f#;+.x/ = sup
h>0

1

h

∫ x+h

x

(
f .y/− 1

h

∫ x+2h

x+h

f

)+
dy:

It is proved in [6] that

f#;+.x/ ≤ sup
h>0

inf
a∈R

1

h

∫ x+h

x

. f .y/− a/+ dy + 1

h

∫ x+2h

x+h

.a − f .y//+ dy(3.1)

≤ C‖ f ‖BMO:

Another result that will be used often is the following ([6, Theorem 4]): if! ∈ A+
p

andM+ f ∈ L p.!/, then
∫
R.M

+ f /p! ≤ C
∫
R. f#;+/p!.

DEFINITION 3.3. Let 1< r < ∞. We say that a weight! belongs to the class
R H+

r if there existsC such that for anya < b

∫ b

a

!r ≤ C.M.!�.a;b//.b//
r −1

∫ b

a

!:

The definition ofR H−
r is the expected one. (See [5] and [11] for more definitions

and results.)
It is proved in [8] that! ∈ A+

∞ if and only if there existsr > 1 such that! ∈ R H+
r .

Something more can be said: if! ∈ A+
p then!1−p′ ∈ A−

p′ ; as a consequence, there
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exists Ž > 0 such that!1−p′ ∈ R H−
1+Ž. If we take s = 1 + p=.p′.1 + Ž// =

.p + Ž/=.1 + Ž/, then! ∈ A+
q , for all s ≤ q ≤ p (see the proof of Proposition 3 in

[5]).
In order to prove the main theorems we still need four preliminary results that we

are going to establish and prove now.

LEMMA 3.1. Let 1 < p < ∞ and letþ ∈ A+
p . Then, there existsŽ > 0 such that

for all r with p′ ≤ r ≤ p′.1 + Ž/, þ−r=p ∈ A−
r .

PROOF. Sinceþ ∈ A+
p , there existsŽ > 0 such thatþ−p′=p = þ1−p′ ∈ R H−

1+Ž. Let r
be such thatp′ ≤ r ≤ p′.1 + Ž/. By Hölder’s inequality we haveþ−p′=p ∈ R H−

r=p′ .
Let us prove thatþ−r=p ∈ A−

r . Considera < b < c < d such thatd − c =
c − b = b − a. Then, Ḧolder’s inequality and the facts thatþ−p′=p ∈ R H−

r=p′ (see [11,
Lemma 2.5]) andþ ∈ A+

p give

(
1

b − a

∫ d

c

þ−r=p

)1=r (
1

b − a

∫ b

a

þ−r .1−r ′/=p

)1=r ′

≤ C

(
1

b − a

∫ d

c

.þ−p′=p/r=p′
)1=r (

1

b − a

∫ b

a

þ

)1=p

≤ C

(
1

b − a

∫ c

b

þ−p′=p

)1=p′ (
1

b − a

∫ b

a

þ

)1=p

≤ C:

By [11, Lemma 2.6], this finishes the proof of Lemma 3.1.

LEMMA 3.2. Let 1 < p < ∞ and letþ ∈ A+
p . Then there existsŽ > 0 such that

for all r with p′ < r < p′.1 + Ž/, þ ∈ A+
p=r ′.þr ′=p/.

PROOF. As before, there existsŽ > 0 such thatþ−p′=p ∈ R H−
1+Ž and, as we have

noticed above,þ ∈ A+
q , for all q in the ranges = 1 + p=.p′.1 + Ž// ≤ q ≤ p.

Therefore, forr such thatp′ < r < p′.1 + Ž/, we haveþ ∈ A+
1+p=r .

We have to prove thatþ ∈ A+
p=r ′.þr ′=p/, that is,

∫ b

a

þ

(∫ c

a

þr ′=p

)−p=r ′

.c − b/.p−r ′/=r ′ ≤ C;

for all a < b < c.
So, leta < b < c. Then, since−p=r ′ < 0, we have

(∫ c

a

þr ′=p

)−p=r ′

≤
(∫ c

b

þr ′=p

)−p=r ′

:(3.2)
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On the other hand, using Hölder’s inequality with exponents.r; r ′/, we get

1 =
(

1

c − b

∫ c

b

þ−1=pþ1=p

)p

≤
(

1

c − b

∫ c

b

þ−r=p

)p=r ( 1

c − b

∫ c

b

þr ′=p

)p=r ′

:

This implies that

(∫ c

b

þr ′=p

)−p=r ′

≤ .c − b/−p

(∫ c

b

þ−r=p

)p=r

:(3.3)

Putting together inequalities (3.2) and (3.3) and using the fact thatþ ∈ A+
1+p=r , we

obtain∫ b

a

þ

(∫ c

a

þr ′=p

)−p=r ′

.c − b/.p−r ′/=r ′ ≤
∫ b

a

þ

(∫ c

b

þ−r=p

)p=r

.c − b/.p−r ′/=r ′−p

≤ C.c − a/1+p=r .c − b/.p−r ′/=r ′−p:

If c − b ≥ b − a we have

C.c − a/1+p=r .c − b/.p−r ′/=r ′−p ≤ C.c − b/1+p=r +.p−r ′/=r ′−p = C;

and we would have finished the proof.
In the case thatc − b < b − a we partition the interval[a; c] by pointsx0 = a <

x1 < · · · < xn < b ≤ xn+1 < xn+2 = c, such thatxi +1 − xi = c − b, i = 0; 1; : : : ; n.
Therefore, fori < n, we have

∫ xi+1

xi

þ.c − b/.p−r ′/=r ′ ≤
(∫ xi+2

xi

þr ′=p

)p=r ′

and, sinceb − xn < c − b,

∫ b

xn

þ.c − b/.p−r ′/=r ′ ≤
(∫ c

xn

þr ′=p

)p=r ′

:

Thus,

∫ b

a

þ.c − b/.p−r ′/=r ′ ≤
n∑

i =0

∫ xi+1

xi

þ.c − b/.p−r ′/=r ′

≤
n∑

i =0

(∫ xi+2

xi

þr ′=p

)p=r ′

≤
(

2
∫ c

a

þr ′=p

)p=r ′

;

which finishes the proof of Lemma 3.2.
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LEMMA 3.3. Let 1 < p < ∞, Þ ∈ Ap, þ ∈ A+
p , ¹ = .Þ=þ/1=p ∈ A∞ and

b ∈ BMO¹ . Then, there exists" > 0 so that, for allr with p′ ≤ r ≤ p′ + ",∫
I

|b − bI |rÞ−r=p ≤ C
∫

I +
þ−r=p:

PROOF. By [13, Lemma 2], there exists" > 0 such that for allr in the range
p′ ≤ r ≤ p′ +", Þ−r=p ∈ Ar . Let us fix suchr and takes′ > 1 such thatÞ−r=p ∈ R Hs′.
It then follows that

1

|I |
∫

I

|b − bI |rÞ−r=p ≤
(

1

|I |
∫

I

|b − bI |rs

)1=s( 1

|I |
∫

I

Þ−rs′=p

)1=s′

(3.4)

≤ C

(
1

|I |
∫

I

|b − bI |rs

)1=s 1

|I |
∫

I

Þ−r=p

≤ C

(
¹.I /

|I |
)r 1

|I |
∫

I

Þ−r=p:

The last inequality is a consequence of John-Nirenberg’s inequality (see the proof of
Proposition 6, [14, Chapter III]).

Now, we use Ḧolder’s inequality and the facts that¹ ∈ A∞ ⊂ A+
∞ andÞ−r=p ∈

Ar ⊂ A+
r , to obtain(

¹.I /

|I |
)r 1

|I |
∫

I

Þ−r=p ≤ C

(
1

|I |
∫

I +
¹

)r 1

|I |
∫

I

Þ−r=p(3.5)

≤ C

(
1

|I |
∫

I +
Þr ′=p

)r=r ′
1

|I |
∫

I +
þ−r=p 1

|I |
∫

I

Þ−r=p

≤ C
1

|I |
∫

I +
þ−r=p:

Putting together inequalities (3.4) and (3.5) we obtain the desired result.

LEMMA 3.4. Suppose that we are under the same hypotheses of Lemma3.3. Let
x ∈ R, h > 0, l ∈ N and letI = .x; x+2l h/. For k ∈ N, let Ik = .x+2kh; x+2k+1h/.
Then, there existsC > 0 independent ofx, h, l andk such that

|bI − bIk | ≤ Ck max
l−1≤ j ≤k−2

1

|I j |
∫

I j

¹:

PROOF. Let k ∈ N, k > l . We shall estimate|bI − bIk |. Clearly,

|bI − bIk | ≤ |bI − bIl | +
k−1∑
j =l

|bI j − bI j+1|:(3.6)
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For the first summand on the right hand side, we observe that ifb ∈ BMO¹ , then there
existsC such that

1

¹.J/

∫
J

|b − bJ+| ≤ C;(3.7)

for any intervalJ. In fact, this sort of estimate, for allJ, characterizes thatb ∈ BMO¹ ,
as well as this other one

1

¹.J/

∫
J∪J+

|b − bJ+| ≤ C:(3.8)

Consequently, sinceIl = I +, we get

|bI − bIl | ≤ C
1

|I |¹.I / ≤ Ck max
l−1≤ j ≤k−2

1

|I j |
∫

I j

¹:

For the rest of the sum, we note thatI −
j +1 ⊃ I j , then the above remark and the fact that

¹ ∈ A∞ give

k−1∑
j =l

|bI j − bI j+1| ≤ C
k−1∑
j =l

1

|I j |¹.I j / = C
k−1∑
j =l

¹.I j /

¹.I j −1/

¹.I j −1/

|I j −1|
|I j −1|
|I j |

≤ C
k−1∑
j =l

1

|I j −1|
∫

I j−1

¹ ≤ Ck max
l−1≤ j ≤k−2

1

|I j |
∫

I j

¹:

4. Proof of the results

PROOF OFTHEOREM 2.1. The following pointwise estimate is the key to prove
Theorem 2.1. We claim that there existŽ1 > 0, Ž2 > 0 andq > 1 such that for allr
in the range (

p

q

)′
< r < min

{
1

q
p′.1 + Ž1/;

(
p

q

)′
.1 + Ž2/

}
;

the following inequality holds

.T+
b f /#;+.x/ ≤ C

{(
M+
þqr ′=p.| f ¹|qr ′

/.x/
)1=qr ′

(4.1)

+
(

M+
þr ′=p.|¹T+ f |r ′

/.x/
)1=r ′

+ M+.¹M+ f /.x/

}
;

for all boundedf with compact support.
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Let us prove this claim. We have

.T+
b f /#;+.x/ ≤ C sup

h>0
inf
c∈R

1

h

∫ x+2h

x

|T+
b f .y/− c| dy:(4.2)

Let x ∈ R andh > 0 be fixed. SetI = .x; x + h/ , J = .x; x + 8h/, f1 = f �J,
f2 = f − f1 andCJ = ∫

R K .x + 2h − z/.bJ − b.z// f2.z/ dz. Observe that

T+
b f .y/ =

∫
R

.b.y/− bJ + bJ − b.t//K .y − t/ f .t/ dt

= .b.y/− bJ/T
+ f .y/−

∫
R

.b.t/− bJ/K .y − t/ f .t/ dt

= .b.y/− bJ/T
+ f .y/− T+..b − bJ/ f1/.y/− T+..b − bJ/ f2/.y/:

Thus,

1

h

∫ x+2h

x

|T+
b f .y/− CJ | dy ≤ 1

h

∫ x+2h

x

|b.y/− bJ | |T+ f .y/| dy(4.3)

+ 1

h

∫ x+2h

x

|T+..b − bJ/ f1/.y/| dy

+ 1

h

∫ x+2h

x

|T+..b − bJ/ f2/.y/− CJ | dy

= I + II + III :

By Lemmas 3.1–3.3, there existsŽ1 > 0 such that for allr in the rangep′ < r <
p′.1 + Ž1/, it holds thatþ−r=p ∈ A−

r , þ ∈ A+
p=r ′.þr ′=p/ and∫

I

|b − bI |rÞ−r=p ≤ C
∫

I +
þ−r=p:

Letq > 1, close enough to 1, such thatþq ∈ A+
p ,þ ∈ A+

p=q and.p=q/′ < p′.1+Ž1/=q.
Therefore, sinceþ ∈ A+

p=q, there existsŽ2 > 0 such that, for allr in the range
.p=q/′ < .p=q/′.1 + Ž2/, it holds thatþ ∈ A+

p=qr ′.þqr ′=p/. Let r be such that(
p

q

)′
< r < min

{
1

q
p′.1 + Ž1/;

(
p

q

)′
.1 + Ž2/

}
:

Then, by Ḧolder’s inequality and the above remarks,

I ≤
(

1

h

∫ x+8h

x

|b − bJ |rÞ−r=p

)1=r (
1

h

∫ x+8h

x

|T+ f |r ′
Þr ′=p

)1=r ′

(4.4)

≤ C

(
1

h

∫ x+16h

x+8h

þ−r=p

)1=r (
1

h

∫ x+8h

x

|¹T+ f |r ′
þr ′=p

)1=r ′
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≤ C

(∫ x+8h

x

þr ′=p

)−1=r ′ (∫ x+8h

x

|¹T+ f |r ′
þr ′=p

)1=r ′

≤ C
(

M+
þr ′=p.|¹T+ f |r ′

/.x/
)1=r ′

:

To control II, we observe that, since

p′

q
< p′ <

(
p

q

)′
< r < min

{
1

q
p′.1 + Ž1/;

(
p

q

)′
.1 + Ž2/

}
;

we havep′ < rq < p′.1+ Ž1/. Then, Ḧolder’s inequality, the fact thatT+ is bounded
from Lq.dx/ to Lq.dx/, Lemma 3.3 and the fact thatþ−qr=p ∈ A−

r give

II ≤
(

1

h

∫ x+2h

x

|T+..b − bJ/ f1/.y/|q dy

)1=q

(4.5)

≤ C

(
1

h

∫ x+8h

x

|b − bJ |q| f |q
)1=q

≤ C

(
1

h

∫ x+8h

x

|b − bJ |qrÞ−qr=p

)1=qr (
1

h

∫ x+8h

x

| f |qr ′
Þqr ′=p

)1=qr ′

≤ C

(
1

h

∫ x+16h

x+8h

þ−qr=p

)1=qr (
1

h

∫ x+8h

x

| f ¹|qr ′
þqr ′=p

)1=qr ′

≤ C

(
1

h

∫ x+8h

x

þqr ′=p

)−1=qr ′ (
1

h

∫ x+8h

x

| f ¹|qr ′
þqr ′=p

)1=qr ′

≤ C
(

M+
þqr ′=p.| f ¹|qr ′

/.x/
)1=qr ′

:

Next, we use condition (c) of the kernel to obtain

III = 1

h

∫ x+2h

x

∣∣∣∣
∫
R

.b.z/− bJ/.K .y − z/− K .x + 2h − z// f2.z/ dz

∣∣∣∣dy(4.6)

≤ C
1

h

∫ x+2h

x

∫ ∞

x+8h

x + 2h − y

.z − .x + 2h//2
|b.z/− bJ | | f .z/| dz dy

≤ C
1

h

∫ x+2h

x

h
∞∑

k=3

∫ x+2k+1h

x+2kh

|b.z/− bJ |
.z − .x + 2h//2

| f .z/| dz dy

≤ Ch
∞∑

k=3

2k+1

.2k − 2/2h2

1

2k+1

∫
Ik

|b.z/− bJ| | f .z/| dz

≤ C
∞∑

k=3

2k+1

.2k − 2/2
1

2k+1h

∫
Ik

|b.z/− bIk | | f .z/| dz
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+ C
∞∑

k=3

2k+1

.2k − 2/2
1

2k+1h
|bIk − bJ |

∫
Ik

| f .z/| dz = IV + V :

To estimate IV, we introduce a modified version of Lemma 3.3. IfI = .x; x + h/,
we denote byI 2 the interval.x + h=2; x + h/. It is very easy to prove that Lemma 3.3
holds changingbI by bI 2. Consequently, arguing as in the estimate of II, and using
this version of Lemma 3.3, we get

IV ≤ C
∞∑

k=3

2k+1

.2k − 2/2
1

2k+1h

∫ x+2k+1h

x

|b.z/− bIk | | f .z/| dz(4.7)

≤ C
(

M+
þqr ′=p.| f ¹|qr ′

/.x/
)1=qr ′

:

Now, let I j .k/ be such that

max
2≤ j ≤k−2

1

|I j |
∫

|I j |
¹ = 1

|I j .k/|
∫

I j .k/

¹:

Then, for alls ∈ I j .k/, we have

1

2k+1h

∫
Ik

| f .z/| dz≤ 1

2k+1h

∫ x+2k+1h

s

| f .z/| dz(4.8)

≤ C
1

x + 2k+1h − s

∫ x+2k+1h

s

| f .z/| dz≤ C M+ f .s/:

This conclusion and Lemma 3.4 give us

V ≤ C
∞∑

k=3

2k+1

.2k − 2/2
k

1

|I j .k/|
∫

I j .k/

¹
1

2k+1h

∫
Ik

| f .z/| dz(4.9)

≤ C
∞∑

k=3

k2k+1

.2k − 2/2
1

|I j .k/|
∫

I j .k/

¹.s/M+ f .s/ ds

≤ C M+.¹M+ f /.x/
∞∑

k=3

k2k+1

.2k − 2/2
= C M+.¹M+ f /.x/:

In the last inequality we have used

1

|I j .k/|
∫

I j .k/

¹M+ f ≤ 2

2 j .k/+1

∫ x+2 j .k/+1

x

¹M+ f:

Collecting all these inequalities, we complete the proof of (4.1).
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Next, we are going to prove that we can apply [6, Theorem 4], that is, we have to
prove thatM+.T+

b f / ∈ L p.þ/. Sinceþ ∈ A+
p , it suffices to show thatT+

b f ∈ L p.þ/.
If b is bounded, thenb ∈ L∞ ⊂ BMO and, by a result in [4],∫

R

|T+
b f |pþ ≤ C

∫
R

| f |pþ < ∞:

In the general case, letbm = b if −m ≤ b ≤ m, bm = m if b ≥ m andbm = −m if
b ≤ −m. Then, it is not difficult to see thatbm ∈ BMO¹ and‖bm‖BMO¹ ≤ C‖b‖BMO¹ ,
with C independent ofm. Then, for eachbm, we have∫

R

|T+
bm

f |pþ ≤ C
∫
R

| f |pþ;

with C independent ofm. Using now the dominated convergence theorem, we get
that {bm f } converges tobf in L1.dx/, as m tends to infinity and, sinceT+ is of
weak type.1; 1/ with respect to the Lebesgue measure,{T+.bm f /} converges to
T+.bf / in measure.dx/. Therefore, there exists a subsequence that converges almost
everywhere. We shall continue denoting this subsequence by{T+.bm f /}. On the other
hand,{bmT+ f } converges tobT+ f almost everywhere. Then, by Fatou’s Lemma,∫

R

|T+
b f |pþ =

∫
R

lim
m→∞

|T+
bm

f |pþ

≤ lim inf
m→∞

∫
R

|T+
bm

f |pþ ≤ C
∫
R

| f |pþ < ∞:

As a consequence, [6, Theorem 4] gives that∫
R

|T+
b f |pþ ≤

∫
R

.M+.T+
b f //pþ ≤ C

∫
R

..T+
b f /#;+/pþ:

Now, using (4.1), we get∫
R

|T+
b f |pþ ≤ C

∫
R

(
M+
þqr ′=p.| f ¹|qr ′

/
)p=qr ′

þ

+ C
∫
R

(
M+
þr ′=p.|¹T+ f |r ′

/
)p=r ′

þ + C
∫
R

.M+.¹M+ f //pþ

= I + II + III :

Sinceþ ∈ A+
p=qr ′.þqr ′=p/, it follows that

I ≤ C
∫
R

.| f ¹|qr ′
/p=qr ′

þ = C
∫
R

| f |pÞ
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and

II ≤ C
∫
R

.|¹T+ f |r ′
/p=r ′

þ = C
∫
R

|T+ f |pÞ ≤ C
∫
R

| f |pÞ;

sinceÞ ∈ Ap ⊂ A+
p .

Finally, using thatþ ∈ A+
p and using again thatÞ ∈ Ap ⊂ A+

p , we get

III ≤ C
∫
R

.¹M+ f /pþ = C
∫
R

.M+ f /pÞ ≤ C
∫
R

| f |pÞ:

PROOF OFTHEOREM2.2. This proof follows the same pattern as the preceding one.
As above, the essential step is the pointwise boundedness of the one-sided sharp of
the operator. In this case we claim the following: LetŽ1 > 0, Ž2 > 0 andq > 1 be as
in the proof of Theorem 2.1. Assume also thatq is close enough to 1 to ensure that
Þ ∈ Ap=q and thatŽ1 is such that the conclusion of [13, Lemma 2] holds for" = p′Ž1.
Then, for allr in the range

(
p

q

)′
< r < min

{
1

q
p′.1 + Ž1/;

(
p

q

)′
.1 + Ž2/

}
;

the following inequality holds

.S+
b f /#;+.x/ ≤ C

{(
M+
þqr ′=p.| f ¹|qr ′

/.x/
)1=qr ′

(4.10)

+
(

M+
þr ′=p.|¹S+ f |r ′

/.x/
)1=r ′

+ M+.¹.M+| f |q/1=q/.x/
}
;

for all boundedf with compact support.
Let us prove the claim. Letx ∈ R andh > 0. Leti ∈ Z be such that 2i ≤ h < 2i +1.

SetJ = .x; x +2i +3/, f1 = f �J, f2 = f − f1 andCJ = S+.b− bJ/ f2.x/. As above,
we have

1

h

∫ x+2h

x

|S+
b f .y/− CJ| dy ≤ 1

h

∫ x+2i+3

x

|b.y/− bJ | |S+ f .y/| dy(4.11)

+ 1

h

∫ x+2i+3

x

|S+..b − bJ/ f1/.y/| dy

+ 1

h

∫ x+2i+3

x

|S+..b − bJ/ f2/.y/− CJ| dy

= I + II + III :

Clearly, I and II are estimated as in the proof of Theorem 2.1.
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Let U+ be as in (2.1). Then

III = 1

h

∫ x+2i+3

x

∣∣‖U+..b − bJ/ f2/.y/‖`2 − ‖U+..b − bJ/ f2/.x/‖`2

∣∣dy(4.12)

≤ 1

h

∫ x+2i+3

x

‖U+..b − bJ/ f2/.y/− U +..b − bJ/ f2/.x/‖`2 dy:

If H is as in (2.2), then

‖U+..b − bJ/ f2/.y/− U +..b − bJ/ f2/.x/‖`2(4.13)

≤
∫ ∞

x+2i+3

|b.t/− bJ | | f .t/|‖H.y − t/− H.x − t/‖`2 dt

≤
∞∑

k=i +3

∫ x+2k+1

x+2k

|b.t/− bIk | | f .t/|‖H.y − t/− H.x − t/‖`2 dt

+
∞∑

k=i +3

|bIk − bJ|
∫ x+2k+1

x+2k

| f .t/|‖H.y − t/− H.x − t/‖`2 dt

= IV + V :

By Hölder’s inequality with exponents.q;q′/ and.r; r ′/,

IV ≤
∞∑

k=i +3

(∫
Ik

|b − bIk |qÞ−q=pÞq=p| f |q
)1=q

(4.14)

×
(∫

Ik

‖H.y − t/− H.x − t/‖q′
`2 dt

)1=q′

≤
∞∑

k=i +3

(∫
Ik

|b − bIk |qrÞ−qr=p

)1=qr (∫
Ik

| f ¹|qr ′
þqr ′=p

)1=qr ′

×
(∫

Ik

‖H.y − t/− H.x − t/‖q′
`2dt

)1=q′

:

Then, by Lemma 3.3 and the fact thatþ−qr=p ∈ A−
r ,(∫ x+2k+1

x+2k

|b − bIk |qrÞ−qr=p

)1=qr

≤ C

(∫ x+2k+2

x+2k+1

þ−qr=p

)1=qr

(4.15)

≤ C.2k/1=q

(∫ x+2k+1

x+2k

þqr ′=p

)−1=qr ′

:

Putting together inequalities (4.14) and (4.15), we obtain

IV ≤ C
∞∑

k=i +3

.2k/1=q
(

M+
þqr ′=p.| f ¹|qr ′

/.x/
)1=qr ′

(4.16)
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×
(∫

Ik

‖H.y − t/− H.x − t/‖q′
`2 dt

)1=q′

:

It is proved in [15, Theorem 1.6] that the kernelH satisfies(∫
Ik

‖H.y − t/− H.x − t/‖q′
`2dt

)1=q′

≤ C
2i =q′

2k
:(4.17)

Inequalities (4.16), (4.17) and the fact that
∑∞

k=i +3.2
k/1=q2i =q′

=2k = C, give

IV ≤ C
(

M+
þqr ′=p.| f ¹|qr ′

/.x/
)1=qr ′

:

Now we observe that Lemma 3.4 yields

|bIk − bJ | ≤ C.k − i / max
3≤ j ≤k−2

1

|I j |
∫

I j

¹ = C.k − i /
1

|I j .k/|
∫

I j .k/

¹;(4.18)

sinceIk = .x + 2i 2k−i ; x + 2i 2k−i +1/.
On the other hand, for allz ∈ I j .k/,(∫

Ik

| f |q
)1=q

≤ C.2k/1=q

(
1

x + 2k+1 − z

∫ x+2k+1

z

| f |q
)1=q

(4.19)

≤ C.2k/1=q
(
M+.| f |q/.z/)1=q

:

Taking into account inequalities (4.18), (4.19) and using again Hölder’s inequality and
(4.17), we get

V ≤ C
∞∑

k=i +3

.k − i /
1

|I j .k/|
∫

I j .k/

¹

(∫
Ik

| f |q
)1=q

×
(∫

Ik

‖H.y − t/− H.x − t/‖q′
`2 dt

)1=q′

≤ C
∞∑

k=i +3

.k − i /
.2k/1=q2i =q′

2k

1

|I j .k/|
∫

I j .k/

¹.z/
(
M+.| f |q/.z/)1=q

dz

≤ C
∞∑

k=i +3

.k − i /
.2k/1=q2i =q′

2k
M+.¹.M+.| f |q//1=q/.x/

= C M+.¹.M+.| f |q//1=q/.x/:
Our next task will be to prove that [6, Theorem 4] can be applied in this setting.
Assuming it for the moment, we obtain∫

R

|S+
b f |pþ ≤ C

∫
R

..S+
b f /#;+/pþ;
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which ensures the desired result having into consideration inequality (4.10) and the
choice ofr , t ands.

Let us prove now that [6, Theorem 4] can be applied. Ifb ∈ L∞, the result in [15]
gives∫

R

|S+
b f |pþ ≤ C

∫
R

|bS+ f |pþ + C
∫
R

|S+.bf /|pþ

≤ C‖b‖p
∞

∫
R

| f |pþ + C
∫
R

|bf |pþ ≤ C‖b‖p
∞

∫
R

| f |pþ < ∞:

Thus, the above argument works and we obtain∫
R

|S+
b f |pþ ≤ C

∫
R

| f |pÞ:

In the general case, takebm as in the proof of Theorem 2.1, and obtain∫
R

|S+
bm

f |pþ ≤ C
∫
R

| f |pÞ

with a constantC not depending onm, since‖bm‖BMO¹ ≤ C‖b‖BMO¹ . Now, an argument
similar to the one used in the proof of Theorem 2.1 shows that, a subsequence of{S+

bm
f }

converges toS+
b f a.e., so by Fatou’s Lemma again,∫

R

|S+
b f |pþ ≤ lim inf

∫
R

|S+
bm

f |pþ ≤ C
∫
R

| f |pÞ;

which finishes the proof of Theorem 2.2.
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