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ABSTRACT. The following open question was implicit in the literature: Are there singular
integrals whose kernels satisfy the Lr -Hörmander condition for any r > 1 but not the L∞-
Hörmander condition? We prove that the one-sided discrete square function, studied in ergodic
theory, is an example of a vector-valued singular integral whose kernel satisfies the Lr -Hörmander
condition for any r > 1 but not the L∞-Hörmander condition. For a Young function A we introduce
the notion of LA-Hörmander. We prove that if an operator satisfies this condition, then one can
dominate the Lp(w) norm of the operator by the Lp(w) norm of a maximal function associated
to the complementary function of A, for any weight w in the A∞ class and 0 < p < ∞. We use
this result to prove that, for the one-sided discrete square function, one can dominate the Lp(w)

norm of the operator by the Lp(w) norm of an iterate of the one-sided Hardy-Littlewood Maximal
Operator, for any w in the A+∞ class.

1. Introduction

Let T be a singular integral operator of the type

Tf (x) = p.v.
∫

Rn

K(x − y)f (y) dy ,

where the kernel K has bounded Fourier transform, and let Mf be the Hardy-Littlewood
maximal function. A classical result of Coifman [4] states that if the kernel satisfies the
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following Lipschitz condition: There are numbers α > 0 and C > 0 such that

|K(x − y) − K(−y)| ≤ C
|x|α

|y|α+n
, whenever |y| > 2|x| (1.1)

then, for any 0 < p < ∞ and any w ∈ A∞, there exists a constant C such that∫
Rn

|Tf (x)|pw(x) dx ≤ C

∫
Rn

(Mf (x))pw(x) dx , (1.2)

for every f such that the left-hand side is finite. Recently, Martell, Pérez, and Trujillo [7]
have proved that (1.2) fails if instead of condition (1.1) we assume that K satisfies the
weaker Hörmander condition

sup
x∈Rn

∫
|y|>2|x|

|K(x − y) − K(−y)| dy < ∞ . (1.3)

Actually they prove that (1.2) fails even if the kernel K satisfies certain intermediate condi-
tions between (1.1) and (1.3). These conditions are the Lr -Hörmander conditions defined
as follows:

Definition 1. Let 1 ≤ r ≤ ∞, we say that the kernel K satisfies the Lr -Hörmander
condition, if there are numbers cr > 1 and Cr > 0 such that for any x ∈ Rn and R > cr |x|

∞∑
m=1

(
2mR

)n ( 1(
2mR

)n
∫

2mR<|y|≤2m+1R

|K(x − y) − K(−y)|r dy

) 1
r

≤ Cr , (1.4)

if r < ∞, and

∞∑
m=1

(
2mR

)n sup
2mR<|y|≤2m+1R

|K(x − y) − K(−y)| ≤ C∞ , (1.5)

in the case r = ∞.

We will denote by Hr the class of kernels satisfying the Lr -Hörmander condition.
Observe that these classes are nested, namely

H∞ ⊂ Hr ⊂ Hs ⊂ H1, 1 < s < r

and that H1 is the class of kernels satisfying the Hörmander condition (1.3). For these
classes some weighted estimates are known. See [13] and [2].

Theorem. Let 1 < r ≤ ∞. Assume that the operator T is bounded in some Lp, 1 <

p < ∞, and the kernel K belongs to Hr , then for any 0 < p < ∞ and w ∈ A∞ there is a
constant C such that∫

Rn

|Tf (x)|pw(x) dx ≤ C

∫
Rn

(Mr ′f (x))p w(x) dx , (1.6)

whenever the left-hand side is finite.

We recall that for any 1 ≤ t , the maximal operator Mt is defined as Mtf (x) =
(M|f |t (x))

1
t ≥ Mf (x). In [7] it is proved that this theorem is sharp in the following sense:
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Theorem. Let 1 ≤ r < ∞ and 1 ≤ t < r ′. There exists a singular integral operator
T , bounded in some Lp, 1 < p < ∞, and whose kernel is in Hr , for which the following
inequality does not hold:∫

Rn

|Tf (x)|pw(x) dx ≤ C

∫
Rn

(Mtf (x))p w(x) dx , (1.7)

for any function f for which the left-hand side is finite, where 0 < p < ∞, w ∈ A∞.

A natural question, left open by this result, is the following:

What happens between H∞ and the intersection of the Hr, 1 ≤ r < ∞?
More precisely: Are there kernels which belong to Hr for every finite r but do not

belong to H∞?
For such kernels, if there are any, the best known result is that the following inequality

holds ∫
Rn

|Tf (x)|pw(x) dx ≤ C

∫
Rn

(Mtf (x))p w(x) dx , (1.8)

for any 1 < t . Since those kernels do not belong to H∞ we can not assert that∫
Rn

|Tf (x)|pw(x) dx ≤ C

∫
Rn

(Mf (x))p w(x) dx . (1.9)

This, however, does not exclude that these operators could satisfy an inequality of the type∫
Rn

|Tf (x)|pw(x) dx ≤ C

∫
Rn

(MAf (x))p w(x) dx (1.10)

where MA is some maximal operator such that Mf (x) ≤ MAf (x) ≤ Mtf (x), for any
function f and any 1 < t .

In this note we give a positive answer to these questions.

In order to state our results we need to recall some definitions. A function B : [0, ∞) →
[0, ∞) is a Young function if it is continuous, convex, increasing and satisfies B(0) = 0
and B(t) → ∞ as t → ∞. The Luxemburg norm of a function f , induced by B, is

||f ||B = inf

{
λ > 0 :

∫
B

( |f |
λ

)
≤ 1

}
,

and the B-average of f over a cube, (or a ball) Q is

||f ||B,Q = inf

{
λ > 0 : 1

|Q|
∫

Q

B

( |f |
λ

)
≤ 1

}
.

We will denote by B the complementary function associated to B (see [3]). Then the
generalized Hölder’s inequality

1

|Q|
∫

Q

|f g| ≤ ||f ||B,Q||g||B,Q , (1.11)

holds.
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The behavior of B(t) for t ≤ t0 does not affect the value of ||f ||B,Q. Therefore, if
A(t) ≈ B(t) for t ≥ t0, then ||f ||A,Q ≈ ||f ||B,Q. This means that we will not be concerned
about the value of the Young functions for t small.

Definition 2. For each locally integrable function f , the maximal operator associated to
the Young function B is defined by

MBf (x) = sup
x∈Q

‖f ‖B,Q ,

where the sup is taken over all the cubes, or balls, that contain x.

We will be using the following Young functions: B(t) = t r , B(t) = et1/k − 1,
B(t) = t (1 + log+(t))k . The maximal operators associated to these functions are Mr ,
MexpL1/k and ML(1+log+ L)k . If k ≥ 0, k ∈ Z, then ML(1+log+ L)k is pointwise equivalent to

Mk+1, where Mk is the k-times iterated of M (see [11]). It is also known that

Mf (x) ≤ CML(1+log+ L)kf (x) ≤ CMrf (x) ,

for all k > 0 and r > 1.

Definition 3. Let A be a Young function. We say that the kernel K satisfies the LA-
Hörmander condition, if there are numbers cA > 1 and CA > 0 such that for any x and
R > cA|x|,

∞∑
m=1

(
2mR

)n ∥∥(K(x − ·) − K(−·)) χ{2mR<|y|≤2m+1R}(·)
∥∥

A,B(0,2m+1R)
≤ CA .

We will denote by HA the class of all kernels satisfying this condition.
The main results on this article are:

Theorem A. Assume that T is a singular integral operator, bounded in some Lp, 1 <

p < ∞, whose kernel K belongs to HA. Then, for any 0 < p < ∞ and w ∈ A∞, there
exists C such that ∫

Rn

|Tf |pw ≤ C

∫
Rn

(MAf )pw ,

for any f ∈ C∞ with compact support.

Similar results can be proved for vector valued operators or one-sided operators.

Theorem B. There is a vector valued, one-sided operator S bounded in all Lp, 1 < p <

∞, whose kernel K belongs to Hr for every finite r ≥ 1 but does not belong to H∞. It does

satisfy the LA-Hörmander condition with A(t) = exp (t
1

1+ε ) − 1, (ε > 0).

As a corollary we obtain that for this operator the inequality∫
R

|Sf (x)|pw(x) dx ≤ C

∫
R

(Mtf (x))p w(x) dx, any t > 1, 0 < p < ∞, w ∈ A∞ (1.12)

may be improved to∫
R

|Sf (x)|pw(x) dx ≤ C

∫
R

((
M+)3f (x)

)p

w(x) dx , (1.13)
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where (M+)3 is the one-sided Hardy-Littlewood maximal operator iterated three times and
w is a weight in the A+∞ class.

Remark 1. We do not know if our operator satisfies (1.2). It is an open question if (1.2)
holds for an operator whose kernel is in ∩Hr \ H∞.

Remark 2. As a by-product of the analysis developed for the study of the example
of Theorem B we give an easy example of an operator whose kernel is not in H∞ but
satisfies (1.2).

The organization of the article is as follows. In Section 2 we give the proof of
Theorem A and state, without proof, the corresponding version for the vector valued case.
Since our example for Theorem B is a vector valued operator with kernel supported on
(−∞, 0), we dedicate Section 3 to the proof of the one-sided version of Theorem A. Finally,
in Section 4 we give an example of an operator whose kernel belongs to ∩Hr \ H∞.

2. Proof of Theorem A

The sharp maximal function is defined as

M#f (x) = sup
x∈Q

inf
a∈R

1

|Q|
∫

Q

|f (y) − a| dy . (2.1)

Although this operator is dominated pointwise by a multiple of the Hardy-Littlewood max-
imal function, there is a theorem that states some kind of reverse inequality. See [5].

Theorem. For any 0 < p < ∞ and w ∈ A∞ there exists C such that∫
Rn

(Mf (x))pw(x) dx ≤ C

∫
Rn

(
M#f (x)

)p

w(x) dx , (2.2)

whenever the left-hand side is finite.

Since it is easy to see that
∫ (

M|Tf |δ(x)
) p

δ w(x) dx is finite whenever f is a C∞-function
with compact support, 0 < δ < 1, and w ∈ A∞, it follows from the preceding theorem and
from the inequality

|Tf (x)| ≤ (
M|Tf |δ(x)

) 1
δ ,

that, in order to prove Theorem A, it is enough to prove

Theorem 1. Let T be a singular integral operator, bounded in some Lp, 1 < p < ∞,
whose kernel K satisfies the LA-Hörmander condition. Then, for any 0 < δ < 1, there is
a constant Cδ such that for any f and x,

(
M#|Tf |δ(x)

) 1
δ ≤ CδMAf (x) . (2.3)

Proof. It follows from (1.11) that for any Young function A, HA ⊂ H1 and therefore T

is of weak type (1, 1). It also follows that Mf (x) ≤ CMAf (x) for any f and x.
Let x0 be fixed and let Q be any cube containing x0. We will denote by d(Q) its

diameter. Let Q̃ be a cube concentric with Q with side equal to 5cA times the side of Q. If
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y /∈ Q̃ then |y − x0| > 2cAd(Q). We split f in the form f = f1 + f2 where f1 = f χ
Q̃

.
It will be enough to prove

(
1

|Q|
∫

Q

∣∣|Tf (x)|δ − |Tf2(x0)|δ
∣∣ dx

) 1
δ ≤ CMAf (x0) . (2.4)

In order to prove this inequality it is enough to prove:

1

|Q|
∫

Q

|Tf1(x)|δ dx ≤ C(Mf (x0))
δ , (2.5)

and

1

|Q|
∫

Q

∣∣|Tf2(x)|δ − |Tf2(x0)|δ
∣∣ dx ≤ C(MAf (x0))

δ . (2.6)

For (2.5) we use that our operator T is of weak type (1, 1) and Kolmogorov’s inequality.

1

|Q|
∫

Q

|Tf1(x)|δ dx ≤ Cδ

(
1

|Q|
∫

Rn

|f1(x)| dx

)δ

= Cδ

(
1

|Q|
∫

Q̃

|f (x)| dx

)δ

≤ Cn,δ(Mf (x0))
δ .

To prove (2.6) we need to use the fact that our kernel satisfies HA. From∣∣|Tf2(x)|δ − |Tf2(x0)|δ
∣∣ ≤ |Tf2(x) − Tf2(x0)|δ ,

it follows that is enough to estimate |Tf2(x) − Tf2(x0)|δ .
If x ∈ Q and R = cAd(Q) > cA|x − x0|, we have

|Tf2(x) − Tf2(x0)| =
∣∣∣∣
∫

y /∈Q̃

(K(x − y) − K(x0 − y)) f (y) dy

∣∣∣∣
≤
∫

|y−x0|>2R

|K(x − y) − K(x0 − y)||f (y)| dy

=
∞∑

m=1

∫
2mR<|y−x0|≤2m+1R

|K(x − y) − K(x0 − y)||f (y)| dy .

If we use Hölder’s inequality (1.11), we may dominate the last term by

∞∑
m=1

(
2mR

)n ∥∥(K(x − ·) − K(x0 − ·))χ{2mR<|y−x0|≤2m+1R}(·)
∥∥

A,B(x0,2m+1R)
MAf (x0)

≤ CMAf (x0) .

Hence,
|Tf2(x) − Tf2(x0)|δ ≤ C(MAf (x0))

δ ,

and (2.6) follows.

The theorem can be extended to vector valued operators Tf (x) = p.v.
∫

K(x −
y)f (y) dy, where now K takes values in a Banach space X.
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Definition 4. We say that the kernel K , satisfies the LA-Hörmander condition if there
are numbers cA > 1 and CA > 0 such that for any x and R > cA|x|,

∞∑
m=1

(
2mR

)n ∥∥‖(K(x − ·) − K(−·))‖X χ{2mR<|y|≤2m+1R}(·)
∥∥

A,B(0,2m+1R)
≤ CA .

The theorem, whose proof we leave to the reader, is

Theorem 2. Let K be a vector valued kernel, that satisfies the LA-Hörmander condition
and let Tf be the associated singular integral. If T is a bounded operator in some Lp,
1 ≤ p < ∞, then, for all 0 < p < ∞ and w ∈ A∞,∫

Rn

‖Tf ‖p
Xw ≤ C

∫
Rn

(MAf )pw ,

whenever the left-hand side is finite.

3. The One-Sided Case

In dimension one, there are examples of singular integrals, both real valued, [1], and vector
valued, [15], whose kernels are supported in (−∞, 0). These one-sided singular integrals
are particular cases of singular integrals, and thus Theorem A holds for them. But it seems
natural to ask if one can do better using the fact that the kernel is supported on (−∞, 0).
More precisely:

Can we improve the inequality∫
R

|Tf |pw ≤ C

∫
R

(MAf )pw ,

allowing, perhaps an operator smaller than MAf , or a wider class of weights?

The answer is yes on both accounts. We can substitute MAf by the corresponding
one-sided operator and allow w to be any weight in the class A+∞ which is bigger than A∞.
(Any increasing function is in A+∞).

The one-sided weights are relevant to the study of the one-sided Hardy-Littlewood
maximal operators:

Definition 5. The one-sided Hardy-Littlewood maximal operators M+ and M− are
defined for locally integrable functions f by

M+f (x) = sup
h>0

1

h

∫ x+h

x

|f | and M−f (x) = sup
h>0

1

h

∫ x

x−h

|f | .

The A+
p classes were introduced by E. Sawyer [14] in the study of the weights for

these operators.
He proved the following.

Theorem. If p > 1 the inequality
∫

R
M+f (x)pw(x) dx ≤ C

∫
R

|f (x)|pw(x) dx holds
for all f ∈ Lp(w) if, and only if, w satisfies the following condition:(

A+
p

) : There exists C such that for any three points a < b < c ,(∫ b

a

w

) 1
p
(∫ c

b

w1−p′
) 1

p′
≤ C(c − a)

(
p + p′ = pp′) . (3.1)



504 M. Lorente, M.S. Riveros, and A. de la Torre

The case p = 1 was not considered in Sawyer’s article but it was proved in [8] that
the weak type estimate for this operator holds, i.e.,∫

{M+f (x)>λ}
w ≤ C

λ

∫
|f (x)|w(x) dx

if and only if:(
A+

1

) : There exists C such that for almost every x: M−w(x) ≤ Cw(x) .

The class A+∞ is defined as the union of all the A+
p classes,

A+∞ = ∪p≥1A
+
p .

The classes A−
p are defined in a similar way. It is interesting to note that Ap = A+

p ∩ A−
p ,

Ap � A+
p and Ap � A−

p . (See [14, 8, 9] for more definitions and results.)

Definition 6. Let f be a locally integrable function. The one-sided sharp maximal
function is defined by

M+,#f (x) = sup
h>0

1

h

∫ x+h

x

(
f (y) − 1

h

∫ x+2h

x+h

f

)+
dy .

It is proved in [10] that

M+,#f (x) ≤ sup
h>0

inf
a∈R

1

h

∫ x+h

x

(f (y) − a)+ dy + 1

h

∫ x+2h

x+h

(a − f (y))+ dy

≤ C||f ||BMO .

(3.2)

Here f + denotes the positive part of f , i.e., f +(x) = max{f (x), 0}. (See [10] for other
results and definitions.)

Definition 7. For each locally integrable function f , the one-sided maximal operators
associated to the Young function B are defined by

M+
B f (x) = sup

x<b

‖f ‖B,(x,b) and M−
B f (x) = sup

a<x
‖f ‖B,(a,x) .

We shall also need the following maximal operators:

M+
r f (x) = (

M+|f |r (x)
)1/r

and M
+,#
δ f (x) =

(
M+,#|f |δ(x)

)1/δ

.

We can now state our result.

Theorem 3. Let K be a kernel, supported on (−∞, 0), possibly vector valued, that
satisfies the LA-Hörmander condition. Let Tf be the associated singular integral. If T is
a bounded operator in some Lp, 1 ≤ p < ∞, then, for any 0 < p < ∞ and w ∈ A+∞ there
exists C > 0 such that∫

R

|Tf (x)|pw(x) dx ≤ C

∫
R

(
M+

A
f (x)

)p
w(x) dx ,
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for any f ∈ C∞ with compact support.

Proof. We will prove the scalar case, since the vector valued case is analogous. Our
proof of Theorem A was based on inequality (2.2). The one-sided version of this theorem
is the following [10]:

Theorem. For any 0 < p < ∞ and w ∈ A+∞ there exists C such that∫
R

∣∣M+f (x)
∣∣pw(x) dx ≤ C

∫
R

(
M+,#f (x)

)p

w(x) dx , (3.3)

whenever the left-hand side is finite.

It follows from this theorem that it is enough to prove

(
M+,#|Tf |δ(x)

) 1
δ ≤ CδM

+
A

f (x) .

If we use (3.2) we get that

M+,#f (x) ≤ sup
h>0

inf
a∈R

1

h

∫ x+h

x

|f (y) − a| dy + 1

h

∫ x+2h

x+h

|a − f (y)| dy

≤ C sup
h>0

inf
a∈R

1

h

∫ x+h

x

|f (y) − a| dy .

Therefore, it is enough to prove that, for fixed x0, there is, for every positive h, a real number
ah, that may depend on x0 and h, such that

(
1

h

∫ x0+h

x0

∣∣|Tf (x)|δ − |ah|δ
∣∣ dx

) 1
δ

≤ C
(
M+

A
f
)
(x0) . (3.4)

We define f1 = f χ(x0,x0+2h), f2 = f χ(x0+2h,∞) and choose ah = Tf2(x0). We need to
prove that,

(
1

h

∫ x0+h

x0

∣∣|Tf (x)|δ − |Tf2(x0)|δ
∣∣ dx

) 1
δ

≤ C
(
M+

A
f
)
(x0) . (3.5)

Now we use the one-sided character of our operator to get that for x ∈ (x0, x0 + h),
Tf (x) = Tf1(x)+ Tf2(x) and follow the proof of (2.3). For f1, Kolmogorov’s inequality
yields

1

h

∫ x0+h

x0

|Tf1(x)|δ dx ≤ Cδ

(
1

h

∫ x0+2h

x0

|f (x)|
)δ

dx ≤ Cδ

(
M+f (x0)

)δ
.

For f2 we observe that for any x ∈ (x0, x0 + h), if R = cAh, we have,

|Tf2(x) − Tf2(x0)| =
∣∣∣∣
∫

y>x0+2h

(K(x − y) − K(x0 − y)) f (y) dy

∣∣∣∣
≤

∞∑
m=1

∫
2mh<y−x0≤2m+1h

|K(x − y) − K(x0 − y)||f (y)| dy .
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If we use Hölder’s inequality (1.11), we may dominate the last term by

∞∑
m=1

(
2mh

) ∥∥(K(x − ·) − K(x0 − ·))χ{2mh<y−x0≤2m+1h(·)
∥∥

A,(x0,x0+2m+1h)
M+

A
f (x0)

≤ CM+
A

f (x0) .

4. Proof of Theorem B

Let us now show an example of a one-sided operator whose kernel is in ∩Hr \ H∞. The
example comes from ergodic theory.

Definition 8. Let f be a measurable function defined on R. For each n ∈ Z we consider
the average Anf (x) = 1

2n

∫ x+2n

x
f . The Square Function is defined as

Sf (x) =
( ∞∑

n=−∞
|Anf (x) − An−1f (x)|2

) 1
2

.

The local version of this operator, namely the operator

S1f (x) =
(

0∑
n=−∞

|Anf (x) − An−1f (x)|2
) 1

2

,

is of interest in ergodic theory and it has been extensively studied. In particular, it has been
proved, [6], that it is of weak type one-one, maps Lp into itself (p > 1) and L∞ into BMO.
The operator S is obviously non-linear but it can be interpreted as the norm of a vector
valued operator (see [15]).

Definition 9. Given a locally integrable function f we define the sequence valued
operator U as follows

Uf (x) = {
Anf (x) − An−1f (x)

}
n

=
{∫

R

1

2n
χ(−2n,0)(x − y)f (y) dy −

∫
R

1

2n−1
χ(−2n−1,0)(x − y)f (y) dy

}
n

=
{∫

R

(
1

2n
χ(−2n,0)(x − y) − 1

2n−1
χ(−2n−1,0)(x − y)

)
f (y) dy

}
n

=
∫

R

K(x − y)f (y) dy ,

where K is the sequence valued function

K(x) = {Kn(x)}n =
{

1

2n
χ(−2n,0)(x) − 1

2n−1
χ(−2n−1,0)(x)

}
n

.

Observe that ‖Uf (x)‖�2 = Sf (x). It is proved in [15] that the kernel satisfies the following
condition:

Smoothness Condition. Assume

x0 ∈ R, x0 < x < x0 + 2i , x0 + 2j < y ≤ x0 + 2j+1 ,
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where i < j and i, j ∈ Z. Let K be the vector valued kernel that appears in Definition 9.
Then

Kn(x − y) − Kn(x0 − y) =
{

0, if n /∈ {j, j + 1} ;
1
2j χ(x0+2j , x+2j )(y), if n ∈ {j, j + 1} .

(4.1)

It follows from this lemma that the kernel does not satisfy H∞. Indeed, take x0 = 0,

0 < x < 2i and R = 2i , then for any m ∈ N

2m2i sup
2m+i<y≤2m+i+1

‖K(x − y) − K(−y)‖�2 = C

and H∞ fails. The following lemma tells us that our kernel satisfies something better that
just being in the intersection of all the Hr, r ≥ 1.

Lemma 1. The kernel K satisfies the LA-Hörmander condition with A(t) ≈ exp (t
1

1+ε ),
ε > 0.

Proof. Let us fix x. Observe that since the support of K is contained in (−∞, 0), we
may assume x > 0. We will assume that R is of the form R = 2i for some integer i and
the general case will follow. Let R > |x|. Then R = 2i > x > 0. Let Im = (0, 2m+i+1).
Then

∥∥‖(K(x − ·) − K(−·))‖�2 χ{2m+i<|y|≤2m+i+1}(·)
∥∥

A,Im
=

√
2

2m+i

∥∥χ(2m+i ,x+2m+i )

∥∥
A,Im

.

An easy computation gives

∥∥χ(2m+i ,x+2m+i )

∥∥
A,Im

= 1

A−1
(

2m+i+1

x

) ≤ C

A−1
(
2m+1

) .

Therefore,

∞∑
m=1

(
2mR

) ∥∥‖(K(x − ·) − K(−·))‖�2 χ{2mR<|y|≤2m+1R}(·)
∥∥

A,B(0,2m+1R)

≤ C

∞∑
m=1

1

(m + 1)1+ε
< ∞ .

Remark 3. Since the square function Sf is a one-sided operator we may apply Theorem 3
to get that for any p > 0 and any A+∞ weight w, there exists a constant C such that∫

(Sf (x))pw(x) dx ≤ C

∫ ((
M+) 3f (x)

)p

w(x) dx ,

whenever the left-hand side is finite.

Proof. We just observe that A(t) = t (1 + log+(t))1+ε which for ε small is dominated
by B(t) = t (1 + log+(t))2 and M+

B f is pointwise equivalent to (M+)3f .

Since the one-sided Hardy-Littlewood maximal operator is bounded form Lp(w) to
itself, and A+

p ⊂ A+∞, we obtain a different proof of the boundedness of S from Lp(w) to
itself, whenever w ∈ A+

p [15].
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Theorem 4. There is a vector valued operator T whose kernel K is in ∩Hr \ H∞ but
nevertheless the operator satisfies (1.2).

Proof. Just consider the operator T defined as Tf (x) = ‖Uf (x)‖�∞ . The argument
given for the square function proves that the kernel K with the �∞ norm does not satisfy
H∞. But the operator corresponding to this norm is dominated by 2M+f (x) and (1.2)
holds trivially (even if the weight w does not satisfy A∞).

We finish by proving that for any Young function A, there exists a kernel K belonging
to HA. (This example is in the spirit of [7] and was suggested to us by C. Pérez.)

Theorem 5. Let A be any Young function. For β > 0 we consider the function kA(t) =
A−1

( 1
t
(log e

t
)−(1+β)

)
χ(0,1)(t). The kernel KA defined by KA(t) = kA(t − 4) belongs to

HA.

Proof. It is an argument similar to the one in [7]. We will prove first that kA ∈ L1 ∩LA.

To see that kA ∈ LA we just need to find c > 0, such that∫
R

A

(
kA(t)

c

)
dt < ∞ .

An easy computation gives

∫
R

A (kA(t)) dt =
∫ 1

0

1

t

(
log

(e

t

))−(1+β) = 1

β
< ∞ ,

while Jensen’s inequality yields

∫ 1

0
kA(t) ≤ A−1

(∫ 1

0

1

t

(
log

e

t

)−(1+β)

dt

)
= A−1

(
1

β

)
.

We define the operator Tf (x) = KA ∗ f (x). Since KA is just a translation of kA, it
belongs to L1 and then ‖Tf ‖q ≤ C‖f ‖q for any 1 ≤ q. We need to prove that KA satisfies

∞∑
m=1

(
2mR

) ∥∥(KA(x − ·) − K(−·)) χ{2mR<|y|≤2m+1R}(·)
∥∥

A,B(0,2m+1R)
≤ CA .

whenever R > cA|x|. We just sketch the proof. We take cA = 1 and |x| < R. For
m ≥ 1 and 2mR < |y| ≤ 2m+1R, one has 2m−1R < |y − x| ≤ 2m+2R and, trivially,
2m−1R < |y| ≤ 2m+2R. Now∥∥(KA(x − ·) − KA(−·)) χ{2mR<|y|≤2m+1R}(·)

∥∥
A,B(0,2m+1R)

≤ C
∥∥KA χ{2m−1R<|y|≤2m+2R}(·)

∥∥
A,B(0,2m+1R)

.

The kernel kA has support on (0, 1). Therefore if R > 5 there is nothing to prove. If
R < 5 and m0 is the unique natural number so that 2m0R ≤ 5 < 2m0+1R. Then, for any
m ≥ m0 + 2 and 2m−1R < |y + 4| < 2m+2R, it follows that |y| > 1 and kA(y) = 0. We
need only to estimate

S =
m0+1∑
m=1

2mR
∥∥KA χ{2m−1R<|y|≤2m+2R}(·)

∥∥
A,B(0,2m+1R)

.
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But, for each m, we have

∥∥KA χ{2m−1R<|y|≤2m+2R}(·)
∥∥

A,B(0,2m+1R)
≤1 + 1

2m+1R

∫
2m−1R<|y+4|≤2m+2R

A(KA(y)) dy.

Since the domains of integration are almost disjoint we can add and get

S ≤ C2m0R + C

∫
A(KA(y)) dy ≤ C

(
5 + 1

β

)
.
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