ON THE COIFMAN TYPE INEQUALITY FOR THE OSCILLATION
OF ONE-SIDED AVERAGES

MARIA LORENTE, MARIA SILVINA RIVEROS, AND ALBERTO DE LA TORRE

ABSTRACT. In this paper we study the Coifman type estimate for an oscillation
operator related to the one-sided discrete square function, ST. We prove that for
any Al weight w, the LP(w)-norm of this operator, and therefore the L?(w)-norm
of ST, is dominated by a constant times the LP(w)-norm of the one-sided Hardy-
Littlewood maximal function iterated two times. For the k-th commutator with
a BMO function we show that k + 2 iterates of the one-sided Hardy-Littlewood
maximal function are sufficient.

1. INTRODUCTION

In [5], Coifman and Fefferman proved that if T" is a Calderén-Zygmund operator, w
is an A, weight and M is the Hardy-Littlewood maximal operator, then, for each p,
0 < p < oo, there exists C' such that

[rmre<c [arpo,

whenever the left-hand side is finite. Inequalities of the type

[rmive<c [0y,

where T' is an operator and My is a maximal operator which, in general, will depend
on T', are known as Coifman type inequalities.

Recently, de la Torre and Torrea [26] and Lorente, Riveros and de la Torre [14] have
studied inequalities with weights for the one-sided discrete square function defined as
follows: for f locally integrable in R and s > 0, let us consider the averages

af@ =1 [ sy

The one-sided discrete square function of f is given by

1/2
STf(x) = (Z\Aznf(ﬂf) —Azn—lf(x)\2> :

nez

We write ST instead of S to emphasize that this is a one-sided operator, i.e., ST f(z) =
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In [14] it was shown that if 0 < p < oo and w € AL, then

[tares [rygre, serz. (L)

R

whenever the left-hand side is finite, where (M ™) stands for the k-th iteration of M+,
and

x+h
M f(z) = sup / £l

A natural question left open by this result is the following: can we improve the result
using fewer iterates of M in (1.1)? In this note we study a bigger operator for which
two iterates are enough. Therefore the inequality (1.1) is improved in two ways: a
bigger operator on the left and a smaller operator on the right. The operator that we
will study is the oscillation of the averages,

1/2

O f(z) = (Z sup | Ay f (@) —Asf(:v)|2> ,
neZ s€Jn

where J,, = [2",2"1). Tt is clear that ST f(z) < O f(x) for all z € R.

If we look at the definition of O% f(z), we see that the sequence {7,(z)}, defined
by 7, (%) = sup,e, |A2n f(x) — Ay f(2)], measures the oscillation of the A, f(x) in the
interval J,. Then we take the ¢? norm of this sequence. Operators of this kind are
of interest in ergodic theory, [3], [8] and singular integrals. The behavior of OF with
respect to the Lebesgue’s measure has already been studied. Concretely, in lemma 2.1
in [4] it is proved that O is of weak type (1,1) and strong type (p,p), 1 < p < oo, with
respect to the Lebesgue’s measure. It is natural to ask what happens if we change the
measure, i.e., which are the good weights for the operator O*? It is worth mentioning
that recently, in [9], it has been proved that the oscillation of the Hilbert Transform
is bounded in LP(w), for w € A,, 1 < p < co. In this paper we shall obtain that O
is bounded from LP(w) to LP(w), for w € AF, 1 < p < oo, as a consequence of the
Coifman type inequality stated in the following theorem:

Theorem 1.1. Let w € AT and 0 < p < oco. Then, there exists C' > 0 such that

[stpes [ oo [(arppre serz,
R R R
whenever the left-hand side is finite.

Remark 1.2. As a consequence of the above theorem, if 1 < p < oo and w € A;, we
obtain that O and S™ are bounded in LP(w). For ST this was first proved in [26].

Remark 1.3. This theorem improves inequality (1.1) for ST substituting (M )3 by
the smaller operator (M ™). It is an open question if (1.1) holds with M instead of
(M™)?, which holds for standard one-sided Calderén-Zygmund operators.

The paper is organized as follows: In Section 2 we introduce notation and re-
call some basic results about one-sided weights and maximal operators associated to
Young functions. In section 3 we prove Theorem 1.1 and in section 4 we study the
commutators of ST and OF with a BMO function b. For p > 1 we prove Coifman
type inequalities that imply the boundedness of the commutators in LP(w) when-
ever w € A;;. For p = 1 we also obtain a weak type inequality for the k-th order
commutator.
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2. DEFINITIONS AND BASIC FACTS ABOUT ONE-SIDED OPERATORS

Definition 2.1. The one-sided Hardy-Littlewood mazimal operators M* and M~ are

defined for locally integrable functions f by
1 x+h 1 T
M) =swy [l and Mf@) =swpy [ 111
x xz—h

h>0 h h>0 h

The one-sided weights are defined as follows,

1 b c I p—1
sup w w P <oo, 1<p<oo, AT
a<be<e (€ —a)? /a </b ) ( P )

M~ w(z) < Cw(z) ae. (A])
AT is defined as the union of the Af classes,
AL = Uy A (A%)

The A, classes are defined reversing the orientation of R. It is interesting to note that
A, =ArNA;, A, C A and A, C A (See [23], [15], [16], [17] for more definitions
and results.)

It was proved in [26], that w € Af, 1 < p < oo, if, and only if, S* is bounded from
LP(w) to LP(w), and that w € AT, if, and only if, ST is of weak-type (1,1) with respect
to w.

Definition 2.2. Let b be a locally integrable function. We say that b € BMO if
1
16| Baro = sup—/|b— br| < o0,
I ’[| I

where I denotes any bounded interval and by = ﬁ f[ b.

Definition 2.3. Let f be a locally integrable function. The one-sided sharp maximal
function is defined by

@ =swt [ (r0-7 | f)+ .

h>0 h th

For 6 > 0 we define P
1
M f () = (MP#|f12(2)) "

It is proved in [18] that

z+h x+2h
M @A <swpint 1 [ (F) =)yt [ a= fw)

h>0 a€R Th
< C|fllBmo-

Now we give definitions and results about Young functions. A function B : [0, 00) —
[0, 00) is a Young function if it is continuous, convex, increasing and satisfies B(0) = 0
and B(t) — oo as t — oco. A Young function B is said to satisfy As-condition (or
B € A,) if there exists a constant C' such that B(2t) < CB(t) for t > 0. The
Luxemburg norm of a function f, given by B is

!|f|rB=inf{A>o:/B(‘§') 51},
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and so the B-average of f over [ is

||f||BJ:inf{>\>O:ﬁ/IB(’—ﬂ> §1},

We will denote by B the complementary function associated to B (see [1]). The
following version of Holder’s inequality holds,

1
T / £l < 201 f115llglbs 1

This inequality can be extended to three functions (see [19]). If A, B,C are Young
functions such that

AT )BT (t) < CTH(1),
then
[ faller < 2[|fl]azllgllz,r (2.1)

Definition 2.4. For each locally integrable function f, the one-sided maximal opera-
tors associated to the Young function B are defined by

Mg f(z) = sup 1flB,@p) and Mgf(x) = sup 1f1B,(a.0)-
< a<zx

We will be dealing with the Young functions By/(t) :_etl/k — 1 and By(t) = t(1 +
log*(¢))*, k € N. The maximal operator associated to By, , M;T will be denoted by

- ' - + k+1
M 1ot e 1038 proved in [22] that M ogt 1) .

It is convenient to look at our operators as vector valued. Let us consider the
sequence

. 1s pointwise equivalent to (M)

1 1
H(z) = {279((%,0)(37) T on—1 X(—2n-1,0) ($)}
neL

and let us define the operator U : f — U f by

Uf(z) = / H(x — ) f(y)dy.

Then it is clear that ST f(z) = ||[Uf(z)||e. If instead of the sequence H we consider
for each s > 0 the sequence K (z) = { K, s(x) }nez,, where

1 1
oslo) = (grcanae) = Sxcan (@) 1 6)

we can define the operator V' acting on locally integrable functions f, as V f(x) =

Je K(z —y)f(y) dy.
If for functions h : R x Z — R we define the norm

1/2
|Alle = (Z sup|h(87n)|2> ,

neEZ s€Jn

then OF f(z) = ||V f(2)]|e-
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3. PROOF OF THEOREM 1.1

The key point in the proof of Theorem 1.1 is the following pointwise estimate: for
each 0 < § < 1, there exists C' so that for any locally integrable function,

M #(O% f)(@) < CM* f(x) + OMJ 1o f(2). (3.1)

Let us prove inequality (3.1). For 0 < § < 1 we have

1 [et2h 1/é
M(;r7#<o+f)(x) < C'sup inf <E/ ||O+f(y)|6 _ ’C|5| dy) . (3.2)

h>0 cER

Let x € R and h > 0. Let us consider the unique i € Z such that 2 < h < 2! and
let denote by J the interval J = [z, z + 273). If we write f = fi + fo, where f1 = fxy,
and choose ¢ = O™ (fy)(z), we have

1/6

(% /:+2h||(9+f(y)|5_ |O+f2($)|5|dy)

2 2it2 1/6
<C ( ! / |0 f(y) - O+f2($)}6dy>

. o 2it? 5 1/6 1 o+2i+2 5 1/6
<C 5/ 0T hw)| dy] +C 5/ |07 faly) = O fola)[" dy
— T+ 1I. (3-3)

Using Lemma 2.1 (1) in [4], that is, the fact that OT is weak type (1,1) with respect
to the Lebesgue’s measure, and Kolmogorov’s inequality, we get

I+2i+3

1<cy FWldy < OM* (). (3.4)

In order to estimate II, we first use Jensen’s inequality and obtain

1 2012 1/
H:O(i/ |||sz(y)||E—||Vf2(x)||E|5dy>

x+42i+2

<o 1V Faly) — V fol@)| | dy. (3.5)
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Let us estimate ||V fo(y) — V fo(2)|| &
IV faly) =V a(2)l|e

Y )
1 42" 1 z+s
N { (2_n /33 f2 B g /w f2) XJn(S) }nEZ,sER
1 y+2" 1 T+2"
S H{ <2_n/y f B 2_77,/ f2> XJn(S)}nGZﬁeR E
1 T+s 1 y+s
{ <g /x f B g /; f2) X‘]"(S) }nEZ,SER E

= III+1V. (3.6)

E

Observe that since y € (z,x+2""?) and f, has support in (z+23, 00), it follows that,
ifn <i+2,then 242" < 2+22 and y+2" < x4+272 42" < 4207242042 = 54 20+3,
As a consequence the only non-zero terms in 11 are those with n > i + 2. Therefore

[e%e] 1 y+2" 2 1/2
11 < (Z Q—n/ f ) . (3.7)
x+42"

n=i+3
Let us consider the Young function B;(t) = ¢! — 1. Then B;(t) = t(1 +log* t) and
Bit(t) = log™ (1 + t). Using the generalized Hélder’s inequality, we obtain that, for
n>1+3,

y+2" 1 z+2nt1
’— ‘ < Q—n/ | fIX[ot2m,y+2m)
427 42"

< CMp-f(z)

| ‘X[x+2n,y+2n) ‘ |Bl,[fc+2",$+2"+l)

1
B ()

where in the last inequality we have used that y — z < 27*2 and that B;' is nonde-
creasing.
Putting together (3.7) and (3.8) we obtain

= CMf (@) < CM;f(2) (33)

Bt (22

[e.o]

1/2
1T < CME-f(x) ( > B (;”))2>

n=1+3

[e.9]

1/2
< OMf(a) ( 3 %) = CM:f(2). (3.9)

iy (R —1—2

et

Let us estimate IV. For n € Z, set

= sup
SGJn
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Then, if £, # 0, we have that there exists s, € J, such that

1 T+Sn 1 Y+sn
ey R R
Sn Ja Sn Jy

Ifn<i+1theny+s, <y+ 2" < g+ 2072 4 27 < g 4 2173, Therefore in IV we
may assume n > i + 2.
Using again generalized Holder’s inequality, we get that, for n > i + 2,

1
> —3,.
25

1 Y+sn 1 z42n+2
ﬁn S C— |f2’ S CS_/ |f|X[w+sn,y+sn)
n Jx+sy nJzx
2n+2
S C Sp, MBilf('r) “X[$+5n,y+$n) ‘ |Bl,(2,1’+2n+2)
1 1
= + - - < + -
CME ) ) © CMES () sy (3.10)
1 y—z
Then,
00 1/2
+ 1 +
IV<CMEf(a)| Y, ————| =CMf(x) (3.11)
n=i+2 (Bl (2n l))

Collecting inequalities (3.2)—(3.6), (3.9) and (3.11), we obtain (3.1). On the other
hand, we have that MBilf = Mzr(l t1og+ 1)/ 18 pointwise equivalent to (MT)2f (see
[22]). As a consequence, (3.1) gives

MI#(OY f)(z) < O(MY)2f(x), ae z€R

To finish the proof of Theorem 1.1 we only have to observe that since w € AL
there exists r > 1, such that w € Af. Then, for § small enough, we get that r < p/§
and thus, w € A;/ s- Therefore, by theorem 4 in [18], we get

/R‘OJFHPWS/R(MEL (O+f)>pw:/1R<M+ (O+f)6>1’/5w
sc/R(M;# (0+f)>pw§04((M+)2f)pw, -

whenever the left hand side is finite. O

4. COMMUTATORS

The commutators of singular integrals with BMO functions have been extensively
studied (see [2],[6],[24],[25],[20],[21],[10],[11],[12],[13]). Since S can be considered as a
singular integral whose kernel satisfies a weaker condition (see [14]), it is interesting to
know if the results about commutators of singular integrals can be extended to S*. In
[14] we have proved that the classical results about boundedness with weights can be
extended to ST and, furthermore, can be improved allowing a wider class of weights,
since ST is a one-sided operator. The results in [20] and [21] have been improved in
[11] for one-sided singular integrals. Observe that for standard Calderén-Zygmund
singular integrals (satisfying the usual Lipschitz condition) one obtains M f instead of
M?f in Theorem 1.1. Therefore we can not expect to obtain the same results for the
commutator of ST as we obtained in [11] for one-sided singular integrals. However, we
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can give estimates of the same kind, increasing in one the iterations of M*. Concretely,
for the k-th order commutator of ST and OF we have:

Theorem 4.1. Let b € BMO and k = 0,1,2,.... Let us define the k-th order
commutator of ST and O by
574560 = | [ 00) = oG = | |
R 02

and
O f () = H [0t b s 0 = ) |

(Observe that for k = 0 we obtain ST and OF.) Then, for 0 < p < co and w € AL,
there exists C' > 0 such that,

[sitaro< [ prosc [ryFeere. rery
R R R

whenever the left-hand side is finite.

Remark 4.2. In [10], the LA*-Hoérmander condition was introduced. If we just use
that H, the vector valued kernel of S*, satisfies the L4*-Hérmander condition for

A(t) = eH+<, then theorem 3.3 in [10] gives (MT)*3 instead of (M*)**2 in the
previous inequality for S; ok

Remark 4.3. In particular, we have that for 1 < p < co and w € A}, 0+ * and SJr ok

are bounded in LP(w), which was proved for S;* using a different approach in [12].

In [26] it was proved that ST is of weak type (1,1) with respect to w, iff w € A7.
The commutator is more singular than the operator. A fact that is not apparent in
the LP(w) norm but it makes a difference near L' (w).

Theorem 4.4. Let b € BMO, w € AL, and k = 0,1,2.... Then, there exists C > 0
such that

w({z e R: S fz )>/\})<w{x€R (’)+kf(:p)>)\})
<C/ /()] (1—1—@) ' M w(z)dz, feLX,

whenever the left-hand side is finite.
Remark 4.5. If w € A, we can put w instead of M ~w in the right hand side.
The following lemma will allow us to use induction in the proof of Theorem 4.1.

Lemma 4.6. Let0 < 6 <y <1,be BMO and k € NU{0}. Then there exists C' > 0
such that for any locally integrable f,

k—1
ME# (O F) (@) < O MHOF F)(@) + CM g e f @)
j=0

k—1

< CY MO Pla) + OO (@) ae.
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Proof. The case k = 0 follows from inequality (3.1) in the proof of Theorem 1.1.
Let us prove the case k > 1. Let A be an arbitrary constant. Then, b(x) — b(y) =
(b(x) = A) = (b(y) — A) and

O f(x) = / (b(x) — b)) K (x — 4)f (y)dy

< || [0 = VK@= sy
[ v -0 [ 00 =K s
— 0*((b— N f)(a)
X Cunatote) =+ [ 06) b K- ) ]|

< O(b = N Na) + 3 Conlble) - NOP (@), (41)

where C} (respectively Cjy ) are absolute constants depending only on j and k
(respectively j, k and s). Let z € R and h > 0. Let i € Z be such that 2! < h < 2¢+1
and set J = [z,z + 2'73). Then, write f = f; + fo, where f; = fx; and set A\ = bj.
Then, for any a € R we have

G /:+2h ‘(O?kf W) - 'a'é‘ dy) E (% /:+2h \<o:”“f(y>> - aV dy) g

k—1 z+2h %
([ w0 syan)

IN

C

m=0

(3 [0t bJ)’“fl)(y)\‘sdy)é

(1 00—t ) o) ‘1

= (I) + (II) + (II). (4.2)

Let us estimate (I). Since 0 < § < < 1, we can choose g such that 1 < ¢ < %. Then,
using Holder’s and John-Nirenberg’s inequalities, we get
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N

-1 1 x+2h , %q/
(I)<cC (ﬁ/ b(y) — by| k=m0 dy) X

o

x+2h

3
07" 1)y

1 z+8h . 5o’ m fmm
(7 [ b -ty .

z+2h

X
S g
sa\,.

e
—

IA

(]

C

]

=
07" 1)y

X
= == 3
a\

< CY MEOF™ @) <Y MHOF" f)(x). (43)

Kolmogorov’s inequality plus the fact that O is of weak type (1,1) with respect to
the Lebesgue measure imply

x420+3
an<cy [ b - bl

4/t

Using now the generalized Holder’s inequality with By.1(t) = e —land By (t) =
t(1 + log™ t)*! we get,

(I1) < C[lIb = byl* |y |l
It follows from John-Nirenberg’s inequality that

(1) < Cllb = 0,15, 11370 < ClIblBhio Mpg—F (x)
< O(MY)2f(2). (4.4)
For (I11) we take a = O*((b—b;y)*fy)(x). Then, by Jensen’s inequality,

sy [ 10800 )~ 0% (b~ b )l dy

<05 V(b= 0" fo)(y) = V(0= bs)" fo) ()] dy. (4.5)

For j >3, let I; =[x + 27,2 + 2/*1) and [; = [z, 2 + 2/*1). As in inequality (3.6) we
have

V(6= b)) fo) () = V(0= bs)* o) ()|

y+2" z+2"
L 1 [ )

xT+s y+s
{ (% /x (b— bJ)ka - é /y (b— bJ)kf2) XJ,L(S)}%Z -

= (I11,)+ (I1I). (4.6)

+
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For (I11,), we proceed as in the estimate of (I77) in Theorem 1.1. Since y € (z,z +
21+2) and f5 has support in (x + 273, 00), it follows that, if n < i+ 2, then z + 2" <
4272 and y + 2" < o+ 2072 427 < g 4 2072 4 2072 = 4 2073 As a consequence,
we only have to take into account n > ¢ 4 2. Therefore

| e 2\ 1/2
x42"
1 y+2n 2 1/2
o [ fO=b) )
42"
1 y+2"

00 2\ 1/2
+C<Z 7 o P00 )
0o 1/2 niH IS 1/2
=C ( Z ](IVn)P) +C ( Z \(Vn)|2> . (4.7)

Using the generalized Hélder’s inequality (2.1) with A = By, B = By4, and C = By,
followed by John-Nirenberg’s inequality we get

o

(HQ%:(E:

n=1+3

<oy

n=i+3

2
(IV,) < Czin_/ [6() = br, [ (D)X (ram yram) (8) dE
I

< C(b = br,) " g, 1, 11 X (@2 g2 |1 57 1,

< C||b||%MO||f||Bk+1,fn||X(w+2”,y+2n)||31,fn

< OMp—f(x) !

B -

For (V) again the generalized Holder’s inequality is used to obtain
(Vo) < Cln =i = DMl X @s2ngrzm b,y

<O(n—i—1)"ME—f(x) !

—_—. 4.9
el O B ) )

Putting together inequalities (4.8) and (4.9) we get

1/2
(I11,) < CMp—f() ( 2 (Bl(2i—i‘2))2>

1

1/2
OV () ( 2 it (B,:%(zln—i—%)?)

n>i+3

< OMg—f(x) < C(M*)*2f(x). (4.10)

Let us estimate (/11;). As in Theorem 1.1, for n € Z, set

T+s y+s
o RO Ry B AS
T Y

S

ﬁn = sup
s€Jn
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Then, if £, # 0 there exists s, € J,, such that

T+Sn Y+Ssn
i/ w—m%—i/ (b—by)f,
x Yy

Sn n

1
> —3,.
f

If n <i+1theny+s, <y+2nt < g4 2002 4ot < g 4 2743 Therefore we only
have to consider n > i + 2 in the estimate of /1/,. Then

1 Y+sn i
fn < C— (b —b1)" f2]
Sn T+Sp
on+2 1 x4-2n+2 .
<C Sp, on+2 . |<b(t) - bJ) f(t)X[x+sn,y+sn)<t)|dt

<C

1
wr [0 = b1 ) O (O
2 In+1

1

+ CQn—i—Q /f |(bln+1 - bJ>kf(t)X[x+sn,y+sn)(t)|dt'
n+1

By the generalized Holder’s inequality (2.1) with the Young functions used in (4.8)
and (4.9), we get

Bn S CH(b - bIn+1)k‘ ‘Bk,in+1HfHBk+1,I~n+1|‘X($+Sn,y+sn)|‘31,fn+1

+ C<n - Z>k| |f| |Bk+171~n+1 | ’X(I“!‘Sn,y‘i‘sn) | ’Bk+1,l~n+1

A
<C Bk+1f($> <Bl—1(2n+2) =) B/;h(ij_j))

1 - (n—i)k
<00 (5 * o)

Then,

(I11,) < CM;;—f n M o l))?) " (g; ( % )2> 12

<(JM+ )< C(MT k+2f (z). (4.11)

Collecting now inequalities (4.2)—(4.6), (4.10) and (4.11) we finish the proof of Lemma
4.6. U

Proof of Theorem 4.1. Let us observe that from the definition of ||-||g, it follows that
Slf k< (’);“k f, therefore the first inequality in Theorem 4.1 holds trivially. For the
second one, we will proceed by induction on k. The case k = 0 is Theorem 1.1. Let
now k € N and suppose that Theorem 4.1 holds for j =1, ...,k — 1. In order to prove
the case j = k we proceed as in (3.12): since w € AL, there exists r > 1, such that
w € Af. Then, for § and v small enough, 0 < 6 <y < 1, we get that r < p/y < p/d
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and thus, w € A;/v C A;r/(s. Then by theorem 4 in [18] and Lemma 4.6 we have

105" fllzoqwy < [1M57(O) * Hllzay < ClM (O Pl o)
k-1
< O MO o) + CHM ) | o). (4.12)

J=0

. + .
Since w € Ap PAC obtain

IO Dllsin = [ MO 1) < €O s

Then, by recurrence, we can continue the chain of inequalities in (4.12) by

k—1
< CY MY F| o) + CHM T Fllowy < CHM T F|| oy

J=0

Proof of Theorem /./4. To prove this theorem we shall use the following results:

(i) For any weight w, we have that

w({r € R: (M 2f(x) > \}) < C/R|—§|logJr (1 + %) M~ w.

(ii) Let 1 < py < oo and F be a family of couples of non-negative functions such
that, for w € AL,

/Rf(x)pow(x)dx < C/Rg(x)pow(x)dx, (4.13)

for all (f,g) € F. Let ¢ € Ay and such that there exist some exponents 0 < ry <
Sp < 00, such that ¢(¢")% is quasi convex. Then, for all w € AL

sup p(Mw({z € R: f(z) > A}) < Csupo(Mw({z € R: g(x) > A})

A>0 A>0

for all (f,g) € F, such that the left hand side is finite.
Result (i) is a direct consequence of theorem 3 in [22], since the pair (w, M~ w) € Af.
The proof of (ii) follows exactly as in theorem 3.1 in [7], then we omit it.
The Coifman type estimate in Theorem 4.1 gives inequality (4.13) for the family

of functions (O " f, (M*)¥*2f) (k > 0). Also observe that ¢(t) = m, where

Biy1(t) = t(1 4 log™ t)¥*1, belongs to Ay and ¢(t"), is quasi convex for r > 1 large
enough.

In order to prove Theorem 4.4, it suffices to consider A = 1 (the general case follows
by applying the result to the function f/A). We may also asume ||b||pmo = 1. Then
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by (ii) and (i),

w{z eR: O f(x) >1}) < sup p(tyw({zr € R: O f(z) > t})

< Csup (tyw({z € R: (M) f(x) > 1})

t>0
<Camp oo [ P (1) e

< Csup 6Bt G) / B () M- w

t>0

< C/R%(UDM‘M

Il
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