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Abstract. In this paper we study the Coifman type estimate for an oscillation
operator related to the one-sided discrete square function, S+. We prove that for
any A+

∞ weight w, the Lp(w)-norm of this operator, and therefore the Lp(w)-norm
of S+, is dominated by a constant times the Lp(w)-norm of the one-sided Hardy-
Littlewood maximal function iterated two times. For the k-th commutator with
a BMO function we show that k + 2 iterates of the one-sided Hardy-Littlewood
maximal function are sufficient.

1. Introduction

In [5], Coifman and Fefferman proved that if T is a Calderón-Zygmund operator, w
is an A∞ weight and M is the Hardy-Littlewood maximal operator, then, for each p,
0 < p < ∞, there exists C such that

∫
|Tf |pw ≤ C

∫
(Mf)pw ,

whenever the left-hand side is finite. Inequalities of the type
∫
|Tf |pw ≤ C

∫
(MT f)pw ,

where T is an operator and MT is a maximal operator which, in general, will depend
on T , are known as Coifman type inequalities.

Recently, de la Torre and Torrea [26] and Lorente, Riveros and de la Torre [14] have
studied inequalities with weights for the one-sided discrete square function defined as
follows: for f locally integrable in R and s > 0, let us consider the averages

Asf(x) =
1

s

∫ x+s

x

f(y)dy.

The one-sided discrete square function of f is given by

S+f(x) =

(∑

n∈Z
|A2nf(x)− A2n−1f(x)|2

)1/2

.

We write S+ instead of S to emphasize that this is a one-sided operator, i.e., S+f(x) =
S+(fχ(x,∞))(x).
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In [14] it was shown that if 0 < p < ∞ and w ∈ A+
∞, then∫

R
(S+f)pω ≤

∫

R
((M+)3f)pω, f ∈ L∞c , (1.1)

whenever the left-hand side is finite, where (M+)k stands for the k-th iteration of M+,
and

M+f(x) = sup
h>0

1

h

∫ x+h

x

|f |.
A natural question left open by this result is the following: can we improve the result
using fewer iterates of M+ in (1.1)? In this note we study a bigger operator for which
two iterates are enough. Therefore the inequality (1.1) is improved in two ways: a
bigger operator on the left and a smaller operator on the right. The operator that we
will study is the oscillation of the averages,

O+f(x) =

(∑

n∈Z
sup
s∈Jn

|A2nf(x)− Asf(x)|2
)1/2

,

where Jn = [2n, 2n+1). It is clear that S+f(x) ≤ O+f(x) for all x ∈ R.
If we look at the definition of O+f(x), we see that the sequence {τn(x)}, defined

by τn(x) = sups∈Jn
|A2nf(x)− Asf(x)| , measures the oscillation of the Asf(x) in the

interval Jn. Then we take the `2 norm of this sequence. Operators of this kind are
of interest in ergodic theory, [3], [8] and singular integrals. The behavior of O+ with
respect to the Lebesgue’s measure has already been studied. Concretely, in lemma 2.1
in [4] it is proved that O+ is of weak type (1,1) and strong type (p, p), 1 < p < ∞, with
respect to the Lebesgue’s measure. It is natural to ask what happens if we change the
measure, i.e., which are the good weights for the operator O+? It is worth mentioning
that recently, in [9], it has been proved that the oscillation of the Hilbert Transform
is bounded in Lp(w), for w ∈ Ap, 1 < p < ∞. In this paper we shall obtain that O+

is bounded from Lp(w) to Lp(w), for w ∈ A+
p , 1 < p < ∞, as a consequence of the

Coifman type inequality stated in the following theorem:

Theorem 1.1. Let ω ∈ A+
∞ and 0 < p < ∞. Then, there exists C > 0 such that∫

R
(S+f)pω ≤

∫

R
(O+f)pω ≤ C

∫

R
((M+)2f)pω, f ∈ L∞c ,

whenever the left-hand side is finite.

Remark 1.2. As a consequence of the above theorem, if 1 < p < ∞ and ω ∈ A+
p , we

obtain that O+ and S+ are bounded in Lp(ω). For S+ this was first proved in [26].

Remark 1.3. This theorem improves inequality (1.1) for S+ substituting (M+)3 by
the smaller operator (M+)2. It is an open question if (1.1) holds with M+ instead of
(M+)2, which holds for standard one-sided Calderón-Zygmund operators.

The paper is organized as follows: In Section 2 we introduce notation and re-
call some basic results about one-sided weights and maximal operators associated to
Young functions. In section 3 we prove Theorem 1.1 and in section 4 we study the
commutators of S+ and O+ with a BMO function b. For p > 1 we prove Coifman
type inequalities that imply the boundedness of the commutators in Lp(w) when-
ever w ∈ A+

p . For p = 1 we also obtain a weak type inequality for the k-th order
commutator.
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2. Definitions and basic facts about one-sided operators

Definition 2.1. The one-sided Hardy-Littlewood maximal operators M+ and M− are
defined for locally integrable functions f by

M+f(x) = sup
h>0

1

h

∫ x+h

x

|f | and M−f(x) = sup
h>0

1

h

∫ x

x−h

|f |.

The one-sided weights are defined as follows,

sup
a<b<c

1

(c− a)p

∫ b

a

ω

(∫ c

b

ω1−p′
)p−1

< ∞, 1 < p < ∞, (A+
p )

M−ω(x) ≤ Cω(x) a.e. (A+
1 )

A+
∞ is defined as the union of the A+

p classes,

A+
∞ = ∪p≥1A

+
p . (A+

∞)

The A−
p classes are defined reversing the orientation of R. It is interesting to note that

Ap = A+
p ∩A−

p , Ap ( A+
p and Ap ( A−

p . (See [23], [15], [16], [17] for more definitions
and results.)

It was proved in [26], that ω ∈ A+
p , 1 < p < ∞, if, and only if, S+ is bounded from

Lp(ω) to Lp(ω), and that ω ∈ A+
1 , if, and only if, S+ is of weak-type (1,1) with respect

to ω.

Definition 2.2. Let b be a locally integrable function. We say that b ∈ BMO if

||b||BMO = sup
I

1

|I|
∫

I

|b− bI | < ∞,

where I denotes any bounded interval and bI = 1
|I|

∫
I
b.

Definition 2.3. Let f be a locally integrable function. The one-sided sharp maximal
function is defined by

M+,#(f)(x) = sup
h>0

1

h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h

f

)+

dy.

For δ > 0 we define

M+,#
δ f(x) =

(
M+,#|f |δ(x)

)1/δ
.

It is proved in [18] that

M+,#(f)(x)∆ ≤ sup
h>0

inf
a∈R

1

h

∫ x+h

x

(f(y)− a)+dy +
1

h

∫ x+2h

x+h

(a− f(y))+dy

≤ C||f ||BMO.

Now we give definitions and results about Young functions. A function B : [0,∞) →
[0,∞) is a Young function if it is continuous, convex, increasing and satisfies B(0) = 0
and B(t) → ∞ as t → ∞. A Young function B is said to satisfy ∆2-condition (or
B ∈ ∆2) if there exists a constant C such that B(2t) ≤ CB(t) for t ≥ 0. The
Luxemburg norm of a function f , given by B is

||f ||B = inf

{
λ > 0 :

∫
B

( |f |
λ

)
≤ 1

}
,



4 M. LORENTE, M.S. RIVEROS, AND A. DE LA TORRE

and so the B-average of f over I is

||f ||B,I = inf

{
λ > 0 :

1

|I|
∫

I

B

( |f |
λ

)
≤ 1

}
.

We will denote by B the complementary function associated to B (see [1]). The
following version of Hölder’s inequality holds,

1

|I|
∫

I

|f g| ≤ 2||f ||B,I ||g||B,I .

This inequality can be extended to three functions (see [19]). If A,B, C are Young
functions such that

A−1(t)B−1(t) ≤ C−1(t),

then

||fg||C,I ≤ 2||f ||A,I ||g||B,I . (2.1)

Definition 2.4. For each locally integrable function f , the one-sided maximal opera-
tors associated to the Young function B are defined by

M+
B f(x) = sup

x<b
‖f‖B,(x,b) and M−

B f(x) = sup
a<x

‖f‖B,(a,x).

We will be dealing with the Young functions Bk(t) = et1/k − 1 and Bk(t) = t(1 +
log+(t))k, k ∈ N. The maximal operator associated to Bk , M+

Bk
will be denoted by

M+
L(1+log+ L)k . It is proved in [22] that M+

L(1+log+ L)k is pointwise equivalent to (M+)k+1.

It is convenient to look at our operators as vector valued. Let us consider the
sequence

H(x) =

{
1

2n
χ(−2n,0)(x)− 1

2n−1
χ(−2n−1,0)(x)

}

n∈Z
and let us define the operator U : f → Uf by

Uf(x) =

∫

R
H(x− y)f(y)dy.

Then it is clear that S+f(x) = ||Uf(x)||`2 . If instead of the sequence H we consider
for each s > 0 the sequence K(x) = {Kn,s(x)}n∈Z,, where

Kn,s(x) =

(
1

2n
χ(−2n,0)(x)− 1

s
χ(−s,0)(x)

)
χJn(s) ,

we can define the operator V acting on locally integrable functions f , as V f(x) =∫
RK(x− y)f(y) dy.
If for functions h : R× Z→ R we define the norm

||h||E =

(∑

n∈Z
sup
s∈Jn

|h(s, n)|2
)1/2

,

then O+f(z) = ||V f(z)||E.
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3. Proof of Theorem 1.1

The key point in the proof of Theorem 1.1 is the following pointwise estimate: for
each 0 < δ < 1, there exists C so that for any locally integrable function,

M+,#
δ (O+f)(x) ≤ CM+f(x) + CM+

L(1+log+ L)
f(x). (3.1)

Let us prove inequality (3.1). For 0 < δ < 1 we have

M+,#
δ (O+f)(x) ≤ C sup

h>0
inf
c∈R

(
1

h

∫ x+2h

x

∣∣|O+f(y)|δ − |c|δ
∣∣ dy

)1/δ

. (3.2)

Let x ∈ R and h > 0. Let us consider the unique i ∈ Z such that 2i ≤ h < 2i+1 and
let denote by J the interval J = [x, x+2i+3). If we write f = f1 +f2, where f1 = fχJ ,
and choose c = O+(f2)(x), we have

(
1

h

∫ x+2h

x

∣∣|O+f(y)|δ − |O+f2(x)|δ∣∣ dy

)1/δ

≤ C

(
1

2i

∫ x+2i+2

x

∣∣O+f(y)−O+f2(x)
∣∣δ dy

)1/δ

≤ C

(
1

2i

∫ x+2i+2

x

∣∣O+f1(y)
∣∣δ dy

)1/δ

+ C

(
1

2i

∫ x+2i+2

x

∣∣O+f2(y)−O+f2(x)
∣∣δ dy

)1/δ

= I + II. (3.3)

Using Lemma 2.1 (1) in [4], that is, the fact that O+ is weak type (1,1) with respect
to the Lebesgue’s measure, and Kolmogorov’s inequality, we get

I ≤ C
1

2i

∫ x+2i+3

x

|f(y)|dy ≤ CM+f(x). (3.4)

In order to estimate II, we first use Jensen’s inequality and obtain

II = C

(
1

2i

∫ x+2i+2

x

|||V f2(y)||E − ||V f2(x)||E|δ dy

)1/δ

≤ C
1

2i

∫ x+2i+2

x

||V f2(y)− V f2(x)||E dy. (3.5)
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Let us estimate ||V f2(y)− V f2(x)||E.

||V f2(y)− V f2(x)||E

=

∣∣∣∣∣

∣∣∣∣∣
{(

1

2n

∫ y+2n

y

f2 − 1

s

∫ y+s

y

f2

)
χJn(s)

}

n∈Z,s∈R

−
{(

1

2n

∫ x+2n

x

f2 − 1

s

∫ x+s

x

f2

)
χJn(s)

}

n∈Z,s∈R

∣∣∣∣∣

∣∣∣∣∣
E

≤
∣∣∣∣∣

∣∣∣∣∣
{(

1

2n

∫ y+2n

y

f2 − 1

2n

∫ x+2n

x

f2

)
χJn(s)

}

n∈Z,s∈R

∣∣∣∣∣

∣∣∣∣∣
E

+

∣∣∣∣∣

∣∣∣∣∣
{(

1

s

∫ x+s

x

f2 − 1

s

∫ y+s

y

f2

)
χJn(s)

}

n∈Z,s∈R

∣∣∣∣∣

∣∣∣∣∣
E

= III + IV. (3.6)

Observe that since y ∈ (x, x+2i+2) and f2 has support in (x+2i+3,∞), it follows that,
if n ≤ i+2, then x+2n ≤ x+2i+2 and y+2n ≤ x+2i+2+2n ≤ x+2i+2+2i+2 = x+2i+3.
As a consequence the only non-zero terms in III are those with n > i + 2. Therefore

III ≤
( ∞∑

n=i+3

∣∣∣∣
1

2n

∫ y+2n

x+2n

f

∣∣∣∣
2
)1/2

. (3.7)

Let us consider the Young function B1(t) = et − 1. Then B1(t) = t(1 + log+ t) and
B−1

1 (t) = log+(1 + t). Using the generalized Hölder’s inequality, we obtain that, for
n ≥ i + 3,

∣∣∣∣
1

2n

∫ y+2n

x+2n

f

∣∣∣∣ ≤
1

2n

∫ x+2n+1

x+2n

|f |χ[x+2n,y+2n)

≤ CM+

B1
f(x)

∣∣∣∣χ[x+2n,y+2n)

∣∣∣∣
B1,[x+2n,x+2n+1)

= CM+

B1
f(x)

1

B−1
1

(
2n

y−x

) ≤ CM+

B1
f(x)

1

B−1
1 (2n−i−2)

, (3.8)

where in the last inequality we have used that y − x ≤ 2i+2 and that B−1
1 is nonde-

creasing.
Putting together (3.7) and (3.8) we obtain

III ≤ CM+

B1
f(x)

( ∞∑
n=i+3

1(
B−1

1 (2n−i−2)
)2

)1/2

≤ CM+

B1
f(x)

( ∞∑
n=i+3

1

(n− i− 2)2

)1/2

= CM+

B1
f(x). (3.9)

Let us estimate IV . For n ∈ Z, set

βn = sup
s∈Jn

∣∣∣∣
1

s

∫ x+s

x

f2 − 1

s

∫ y+s

y

f2

∣∣∣∣ .
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Then, if βn 6= 0, we have that there exists sn ∈ Jn such that
∣∣∣∣

1

sn

∫ x+sn

x

f2 − 1

sn

∫ y+sn

y

f2

∣∣∣∣ >
1

2
βn.

If n ≤ i + 1 then y + sn ≤ y + 2n+1 ≤ x + 2i+2 + 2n+1 ≤ x + 2i+3. Therefore in IV we
may assume n ≥ i + 2.

Using again generalized Hölder’s inequality, we get that, for n ≥ i + 2,

βn ≤ C
1

sn

∫ y+sn

x+sn

|f2| ≤ C
1

sn

∫ x+2n+2

x

|f |χ[x+sn,y+sn)

≤ C
2n+2

sn

M+

B1
f(x)

∣∣∣∣χ[x+sn,y+sn)

∣∣∣∣
B1,(x,x+2n+2)

= CM+

B1
f(x)

1

B−1
1

(
2n+2

y−x

) ≤ CM+

B1
f(x)

1

B−1
1 (2n−i)

. (3.10)

Then,

IV ≤ CM+

B1
f(x)

( ∞∑
n=i+2

1(
B−1

1 (2n−i)
)2

)1/2

= CM+

B1
f(x). (3.11)

Collecting inequalities (3.2)–(3.6), (3.9) and (3.11), we obtain (3.1). On the other
hand, we have that M+

B1
f = M+

L(1+log+ L)
f is pointwise equivalent to (M+)2f (see

[22]). As a consequence, (3.1) gives

M+,#
δ (O+f)(x) ≤ C(M+)2f(x), a.e. x ∈ R.

To finish the proof of Theorem 1.1 we only have to observe that since w ∈ A+
∞,

there exists r > 1, such that w ∈ A+
r . Then, for δ small enough, we get that r < p/δ

and thus, w ∈ A+
p/δ. Therefore, by theorem 4 in [18], we get

∫

R

∣∣O+f
∣∣p ω ≤

∫

R

(
M+

δ

(O+f
))p

ω =

∫

R

(
M+

(O+f
)δ

)p/δ

ω

≤ C

∫

R

(
M+,#

δ

(O+f
))p

ω ≤ C

∫

R

(
(M+)2f

)p
ω, (3.12)

whenever the left hand side is finite. ¤

4. Commutators

The commutators of singular integrals with BMO functions have been extensively
studied (see [2],[6],[24],[25],[20],[21],[10],[11],[12],[13]). Since S+ can be considered as a
singular integral whose kernel satisfies a weaker condition (see [14]), it is interesting to
know if the results about commutators of singular integrals can be extended to S+. In
[14] we have proved that the classical results about boundedness with weights can be
extended to S+ and, furthermore, can be improved allowing a wider class of weights,
since S+ is a one-sided operator. The results in [20] and [21] have been improved in
[11] for one-sided singular integrals. Observe that for standard Calderón-Zygmund
singular integrals (satisfying the usual Lipschitz condition) one obtains Mf instead of
M2f in Theorem 1.1. Therefore we can not expect to obtain the same results for the
commutator of S+ as we obtained in [11] for one-sided singular integrals. However, we
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can give estimates of the same kind, increasing in one the iterations of M+. Concretely,
for the k-th order commutator of S+ and O+ we have:

Theorem 4.1. Let b ∈ BMO and k = 0, 1, 2, . . . . Let us define the k-th order
commutator of S+ and O+ by

S+,k
b f(x) =

∣∣∣∣
∣∣∣∣
∫

R
(b(x)− b(y))kH(x− y)f(y)dy

∣∣∣∣
∣∣∣∣
`2

,

and

O+,k
b f(x) =

∣∣∣∣
∣∣∣∣
∫

R
(b(x)− b(y))kK(x− y)f(y)dy

∣∣∣∣
∣∣∣∣
E

.

(Observe that for k = 0 we obtain S+ and O+.) Then, for 0 < p < ∞ and w ∈ A+
∞,

there exists C > 0 such that,∫

R
(S+,k

b f)pw ≤
∫

R
(O+,k

b f)pw ≤ C

∫

R
((M+)k+2f)pw, f ∈ L∞c ,

whenever the left-hand side is finite.

Remark 4.2. In [10], the LA,k-Hörmander condition was introduced. If we just use
that H, the vector valued kernel of S+, satisfies the LA,k-Hörmander condition for

A(t) = e
1

1+k+ε , then theorem 3.3 in [10] gives (M+)k+3 instead of (M+)k+2 in the

previous inequality for S+,k
b .

Remark 4.3. In particular, we have that for 1 < p < ∞ and w ∈ A+
p , O+,k

b and S+,k
b

are bounded in Lp(ω), which was proved for S+,k
b using a different approach in [12].

In [26] it was proved that S+ is of weak type (1,1) with respect to w, iff w ∈ A+
1 .

The commutator is more singular than the operator. A fact that is not apparent in
the Lp(w) norm but it makes a difference near L1(w).

Theorem 4.4. Let b ∈ BMO, w ∈ A+
∞ and k = 0, 1, 2.... Then, there exists C > 0

such that

w({x ∈ R : S+,k
b f(x) > λ}) ≤ w({x ∈ R : O+,k

b f(x) > λ})

≤ C

∫

R

|f(x)|
λ

log+

(
1 +

|f(x)|
λ

)k+1

M−w(x) dx, f ∈ L∞c ,

whenever the left-hand side is finite.

Remark 4.5. If w ∈ A+
1 , we can put w instead of M−w in the right hand side.

The following lemma will allow us to use induction in the proof of Theorem 4.1.

Lemma 4.6. Let 0 < δ < γ < 1, b ∈ BMO and k ∈ N∪{0}. Then there exists C > 0
such that for any locally integrable f ,

M+,#
δ

(
O+,k

b f
)

(x) ≤ C

k−1∑
j=0

M+
γ (O+,j

b f)(x) + CM+
L(1+log+ L)1+kf(x)

≤ C

k−1∑
j=0

M+
γ (O+,j

b f)(x) + C(M+)k+2f(x) a.e.
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Proof. The case k = 0 follows from inequality (3.1) in the proof of Theorem 1.1.
Let us prove the case k ≥ 1. Let λ be an arbitrary constant. Then, b(x) − b(y) =
(b(x)− λ)− (b(y)− λ) and

O+,k
b f(x) =

∣∣∣∣
∣∣∣∣
∫

R
(b(x)− b(y))kK(x− y)f(y)dy

∣∣∣∣
∣∣∣∣
E

=

∣∣∣∣∣

∣∣∣∣∣
k∑

j=0

Cj,k(b(x)− λ)j

∫

R
(b(y)− λ)k−jK(x− y)f(y)dy

∣∣∣∣∣

∣∣∣∣∣
E

≤
∣∣∣∣
∣∣∣∣
∫

R
(b(y)− λ)kK(x− y)f(y)dy

∣∣∣∣
∣∣∣∣
E

+

∣∣∣∣∣

∣∣∣∣∣
k∑

j=1

Cj,k (b(x)− λ)j

∫

R
(b(y)− λ)k−jK(x− y)f(y)dy

∣∣∣∣
∣∣∣∣
E

= O+((b− λ)kf)(x)

+

∣∣∣∣∣

∣∣∣∣∣
k∑

j=1

k−j∑
s=0

Cj,k,s(b(x)− λ)s+j

∫

R
(b(x)− b(y))k−j−sK(x− y)f(y)dy

∣∣∣∣
∣∣∣∣
E

≤ O+((b− λ)kf)(x) +
k−1∑
m=0

Ck,m|b(x)− λ|k−mO+,m
b f(x) , (4.1)

where Cj,k (respectively Cj,k,s) are absolute constants depending only on j and k
(respectively j, k and s). Let x ∈ R and h > 0. Let i ∈ Z be such that 2i ≤ h < 2i+1

and set J = [x, x + 2i+3). Then, write f = f1 + f2, where f1 = fχJ and set λ = bJ .
Then, for any a ∈ R we have

(
1

h

∫ x+2h

x

∣∣∣(O+,k
b f(y))δ − |a|δ

∣∣∣ dy

) 1
δ

≤
(

1

h

∫ x+2h

x

∣∣∣(O+,k
b f(y))− a

∣∣∣
δ

dy

) 1
δ

≤ C

[
k−1∑
m=0

(
1

h

∫ x+2h

x

|b(y)− bJ |(k−m)δ(O+,m
b f(y))δdy

) 1
δ

+

(
1

h

∫ x+2h

x

|O+((b− bJ)kf1)(y)|δdy

) 1
δ

+

(
1

h

∫ x+2h

x

|O+((b− bJ)kf2)(y)− a|δdy

) 1
δ

]

= (I) + (II) + (III). (4.2)

Let us estimate (I). Since 0 < δ < γ < 1, we can choose q such that 1 < q < γ
δ
. Then,

using Hölder’s and John-Nirenberg’s inequalities, we get
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(I) ≤ C

k−1∑
m=0

(
1

h

∫ x+2h

x

|b(y)− bJ |(k−m)δq′dy

) 1
δq′

×

×
(

1

h

∫ x+2h

x

|O+,m
b f(y)|δqdy

) 1
δq

≤ C

k−1∑
m=0

[(
1

h

∫ x+8h

x

|b(y)− bJ |(k−m)δq′dy

) 1
δq′(k−m)

]k−m

×

×
(

1

h

∫ x+2h

x

|O+,m
b f(y)|δqdy

) 1
δq

≤ C

k−1∑
m=0

M+
δq(O+,m

b f)(x) ≤ C

k−1∑
m=0

M+
γ (O+,m

b f)(x). (4.3)

Kolmogorov’s inequality plus the fact that O+ is of weak type (1, 1) with respect to
the Lebesgue measure imply

(II) ≤ C
1

h

∫ x+2i+3

x

|b(y)− bJ |k|f(y)|dy.

Using now the generalized Hölder’s inequality with Bk+1(t) = et1/(k+1)−1 and Bk+1(t) =
t(1 + log+ t)k+1 we get,

(II) ≤ C|||b− bJ |k||Bk+1,J ||f ||Bk+1,J .

It follows from John-Nirenberg’s inequality that

(II) ≤ C||b− bJ ||k+1
B1,J ||f ||Bk+1,J ≤ C||b||k+1

BMOM+

Bk+1
f(x)

≤ C(M+)k+2f(x). (4.4)

For (III) we take a = O+((b− bJ)kf2)(x). Then, by Jensen’s inequality,

(III) ≤ C
1

2i

∫ x+2i+3

x

|O+((b− bJ)kf2)(y)−O+((b− bJ)kf2)(x)| dy

≤ C
1

2i

∫ x+2i+3

x

||V ((b− bJ)kf2)(y)− V ((b− bJ)kf2)(x)||E dy. (4.5)

For j ≥ 3, let Ij = [x + 2j, x + 2j+1) and Ĩj = [x, x + 2j+1). As in inequality (3.6) we
have

||V ((b− bJ)kf2)(y)− V ((b− bJ)kf2)(x)||E

≤
∣∣∣∣∣

∣∣∣∣∣
{(

1

2n

∫ y+2n

y

(b− bJ)kf2 − 1

2n

∫ x+2n

x

(b− bJ)kf2

)
χJn(s)

}

n∈Z,s∈R

∣∣∣∣∣

∣∣∣∣∣
E

+

∣∣∣∣∣

∣∣∣∣∣
{(

1

s

∫ x+s

x

(b− bJ)kf2 − 1

s

∫ y+s

y

(b− bJ)kf2

)
χJn(s)

}

n∈Z,s∈R

∣∣∣∣∣

∣∣∣∣∣
E

= (IIIn) + (IIIs). (4.6)
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For (IIIn), we proceed as in the estimate of (III) in Theorem 1.1. Since y ∈ (x, x +
2i+2) and f2 has support in (x + 2i+3,∞), it follows that, if n ≤ i + 2, then x + 2n ≤
x + 2i+2 and y + 2n ≤ x + 2i+2 + 2n ≤ x + 2i+2 + 2i+2 = x + 2i+3. As a consequence,
we only have to take into account n > i + 2. Therefore

(IIIn) =

( ∞∑
n=i+3

∣∣∣∣
1

2n

∫ y+2n

x+2n

f(b− bJ)k

∣∣∣∣
2
)1/2

≤ C

( ∞∑
n=i+3

∣∣∣∣
1

2n

∫ y+2n

x+2n

f(b− bIn)k

∣∣∣∣
2
)1/2

+ C

( ∞∑
n=i+3

∣∣∣∣
1

2n

∫ y+2n

x+2n

f(bIn − bJ)k

∣∣∣∣
2
)1/2

= C

( ∞∑
n=i+3

|(IVn)|2
)1/2

+ C

( ∞∑
n=i+3

|(Vn)|2
)1/2

. (4.7)

Using the generalized Hölder’s inequality (2.1) with A = B1, B = Bk+1 and C = Bk,
followed by John-Nirenberg’s inequality we get

(IVn) ≤ C

√
2

2n

∫

In

|b(t)− bIn |k|f(t)|χ(x+2n,y+2n)(t) dt

≤ C||(b− bIn)k||Bk,Ĩn
||fχ(x+2n,y+2n)||Bk,Ĩn

≤ C||b||kBMO||f ||Bk+1,Ĩn
||χ(x+2n,y+2n)||B1,Ĩn

≤ CM+

Bk+1
f(x)

1

B−1
1 (2n−i−2)

. (4.8)

For (Vn) again the generalized Hölder’s inequality is used to obtain

(Vn) ≤ C(n− i− 1)k||f ||Bk+1,Ĩn
||χ(x+2n,y+2n)||Bk+1,Ĩn

≤ C(n− i− 1)kM+

Bk+1
f(x)

1

B−1
k+1(2

n−i−2)
. (4.9)

Putting together inequalities (4.8) and (4.9) we get

(IIIn) ≤ CM+

Bk+1
f(x)

( ∑
n≥i+3

1

(B−1
1 (2n−i−2))2

)1/2

+ CM+

Bk+1
f(x)

( ∑
n≥i+3

(n− i− 1)2k 1

(B−1
k+1(2

n−i−2))2

)1/2

≤ CM+

Bk+1
f(x) ≤ C(M+)k+2f(x). (4.10)

Let us estimate (IIIs). As in Theorem 1.1, for n ∈ Z, set

βn = sup
s∈Jn

∣∣∣∣
1

s

∫ x+s

x

(b− bJ)kf2 − 1

s

∫ y+s

y

(b− bJ)kf2

∣∣∣∣ .



12 M. LORENTE, M.S. RIVEROS, AND A. DE LA TORRE

Then, if βn 6= 0 there exists sn ∈ Jn, such that

∣∣∣∣
1

sn

∫ x+sn

x

(b− bJ)kf2 − 1

sn

∫ y+sn

y

(b− bJ)kf2

∣∣∣∣ >
1

2
βn.

If n ≤ i + 1 then y + sn ≤ y + 2n+1 ≤ x + 2i+2 + 2n+1 ≤ x + 2i+3. Therefore we only
have to consider n ≥ i + 2 in the estimate of IIIs. Then

βn ≤ C
1

sn

∫ y+sn

x+sn

|(b− bJ)kf2|

≤ C
2n+2

sn

1

2n+2

∫ x+2n+2

x

|(b(t)− bJ)kf(t)χ[x+sn,y+sn)(t)|dt

≤ C
1

2n+2

∫

Ĩn+1

|(b(t)− bIn+1)
kf(t)χ[x+sn,y+sn)(t)|dt

+ C
1

2n+2

∫

Ĩn+1

|(bIn+1 − bJ)kf(t)χ[x+sn,y+sn)(t)|dt.

By the generalized Hölder’s inequality (2.1) with the Young functions used in (4.8)
and (4.9), we get

βn ≤ C||(b− bIn+1)
k||Bk,Ĩn+1

||f ||Bk+1,Ĩn+1
||χ(x+sn,y+sn)||B1,Ĩn+1

+ C(n− i)k||f ||Bk+1,Ĩn+1
||χ(x+sn,y+sn)||Bk+1,Ĩn+1

≤ CM+

Bk+1
f(x)

(
1

B−1
1 (2n+2

y−x
)

+ (n− i)k 1

B−1
k+1(

2n+2

y−x
)

)

≤ CM+

Bk+1
f(x)

(
1

B−1
1 (2n−i)

+
(n− i)k

B −1
k+1(2

n−i)

)
.

Then,

(IIIs) ≤ CM+

Bk+1
f(x)




( ∞∑
n=i+2

(
1

B−1
1 (2n−i)

)2
)1/2

+

( ∞∑
n=i+2

(
(n− i)k

B−1
k+1(2

n−i)

)2
)1/2




≤ CM+

Bk+1
f(x) ≤ C(M+)k+2f(x). (4.11)

Collecting now inequalities (4.2)–(4.6), (4.10) and (4.11) we finish the proof of Lemma
4.6. ¤

Proof of Theorem 4.1. Let us observe that from the definition of || · ||E, it follows that

S+,k
b f ≤ O+,k

b f , therefore the first inequality in Theorem 4.1 holds trivially. For the
second one, we will proceed by induction on k. The case k = 0 is Theorem 1.1. Let
now k ∈ N and suppose that Theorem 4.1 holds for j = 1, ..., k− 1. In order to prove
the case j = k we proceed as in (3.12): since w ∈ A+

∞, there exists r > 1, such that
w ∈ A+

r . Then, for δ and γ small enough, 0 < δ < γ < 1, we get that r < p/γ < p/δ
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and thus, w ∈ A+
p/γ ⊂ A+

p/δ. Then by theorem 4 in [18] and Lemma 4.6 we have

||O+,k
b f ||Lp(w) ≤ ||M+

δ (O+,k
b f)||Lp(w) ≤ C||M+,#

δ (O+,k
b f)||Lp(w)

≤ C

k−1∑
j=0

||M+
γ (O+,j

b f)||Lp(w) + C||(M+)k+2f ||Lp(w). (4.12)

Since w ∈ A+
p/γ we obtain

||M+
γ (O+,j

b f)||Lp(w) =

∫

R

(
M+(O+,j

b f)γ
)p/γ

w ≤ C||O+,j
b f ||Lp(w).

Then, by recurrence, we can continue the chain of inequalities in (4.12) by

≤ C

k−1∑
j=0

||(M+)j+2f ||Lp(w) + C||(M+)k+2f ||Lp(w) ≤ C||(M+)k+2f ||Lp(w).

¤

Proof of Theorem 4.4. To prove this theorem we shall use the following results:

(i) For any weight w, we have that

w({x ∈ R : (M+)k+2f(x) > λ}) ≤ C

∫

R

|f |
λ

log+

(
1 +

|f |
λ

)k+1

M−w.

(ii) Let 1 < p0 < ∞ and F be a family of couples of non-negative functions such
that, for w ∈ A+

∞,
∫

R
f(x)p0w(x)dx ≤ C

∫

R
g(x)p0w(x)dx, (4.13)

for all (f, g) ∈ F . Let φ ∈ ∆2 and such that there exist some exponents 0 < r0 <
s0 < ∞, such that φ(tr0)s0 is quasi convex. Then, for all w ∈ A+

∞,

sup
λ>0

φ(λ)w({x ∈ R : f(x) > λ}) ≤ C sup
λ>0

φ(λ)w({x ∈ R : g(x) > λ})

for all (f, g) ∈ F , such that the left hand side is finite.
Result (i) is a direct consequence of theorem 3 in [22], since the pair (w, M−w) ∈ A+

1 .
The proof of (ii) follows exactly as in theorem 3.1 in [7], then we omit it.
The Coifman type estimate in Theorem 4.1 gives inequality (4.13) for the family

of functions (O+,k
b f, (M+)k+2f) (k ≥ 0). Also observe that φ(t) = 1

Bk+1(1/t)
, where

Bk+1(t) = t(1 + log+ t)k+1, belongs to ∆2 and φ(tr), is quasi convex for r > 1 large
enough.

In order to prove Theorem 4.4, it suffices to consider λ = 1 (the general case follows
by applying the result to the function f/λ). We may also asume ||b||BMO = 1. Then
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by (ii) and (i),

w({x ∈ R : O+,k
b f(x) > 1}) ≤ sup

t>0
φ(t)w({x ∈ R : O+,k

b f(x) > t})

≤ C sup
t>0

φ(t)w({x ∈ R : (M+)k+2f(x) > t})

≤ C sup
t>0

φ(t)

∫

R
Bk+1

( |f |
t

)
M−w

≤ C sup
t>0

φ(t)Bk+1

(
1

t

) ∫

R
Bk+1 (|f |) M−w

≤ C

∫

R
Bk+1 (|f |) M−w.

¤
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