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ABSTRACT. We consider two-weight estimates for singular integral operators and
their commutators with bounded mean oscillation functions. Hérmander type con-
ditions in the scale of Orlicz spaces are assumed on the kernels. We prove weighted
weak-type estimates for pairs of weights (u, Su) where w is an arbitrary nonnegative
function and S is a maximal operator depending on the smoothness of the kernel.
We also obtain sufficient conditions on a pair of weights (u,v) for the operators to
be bounded from LP(v) to LP**°(u). One-sided singular integrals, as the differen-
tial transform operator, are under study. We also provide applications to Fourier
multipliers and homogeneous singular integrals.
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1. INTRODUCTION

The Calderon-Zygmund decomposition is a very powerful tool in Harmonic Analysis.
Since its discovery in [6], many results have used it to derive boundedness properties
of singular integral operators. For instance, using that the Hilbert or the Riesz trans-
forms are bounded on L?, and by means of the Calderén-Zygmund decomposition,
one proves that these classical operators are of weak-type (1,1). From this starting
point, in the literature one can find many boundedness results for the Hilbert and the
Riesz transforms: estimates on L” one-weight and two-weight norm inequalities, .. ..

The Calderén-Zygmund theory generalizes these ideas to provide a general frame-
work allowing us to deal with singular integral operators. A typical Calderén-Zygmund
convolution operator 7' is bounded on L?(R") and has a kernel K on which different
conditions are assumed. In the easiest case, K behaves as the kernel of the Hilbert
or Riesz transforms. That is, K decays as |z|™" and its gradient as |z|™""!. It was
already proved in [19] that these assumptions can be relaxed in order to show that 7'
is of weak-type (1,1): it suffices to impose that K satisfies the so-called Hérmander
condition (we write K € H;),

/ |K(z —y) — K(z)|dz < C, yeR" ¢>1.
|z[>cy|

From here, and by interpolation, 7" is bounded on LP(R") with 1 < p < cc.

The underlying measure dz can be replaced by w(z) dx where w is a Muckenhoupt
A, weight: The Hilbert and the Riesz transforms are bounded on LP(w) = LP(w(x) dx)
if and only if w € A, for 1 < p < co. For p = 1, the weak-type (1,1) with respect
to w holds if and only if w € A;. The decay assumed before on the kernel and its
gradient guarantees the same weighted estimates for the operator 7. However, the
Hormander condition does not suffice to derive such estimates as it is proved in [18]
(see also [26]). One can relax the decay conditions assumed on the kernel and still
prove the previous weighted norm inequalities. Namely, it is enough to impose that
K satisfies the following Lipschitz condition (we write K € HZ):

|y|*
|K(z —y) — K(x)| <C 2o lz| > clyl.

With this condition in hand, one can show Coifman’s estimate (see [7]): for any
0<p<ooandany we Ay

/Rn T f(x)|P w(z)de < C M f(z)? w(z) dx. (1.1)

R’VL
These estimates can be seen as a control of the operator T by the Hardy-Littlewood
maximal function M and this allows one to show that 7' satisfies the most of the
weighted estimates that M does (see [14] for more details).

When relaxing the HZ condition, the operators become more singular and less
smoother. Thus, the Coifman estimates to be expected will have a worse maximal
operator on the righthand side. For instance, one has a scale of Hormander’s conditions
based on the Lebesgue spaces L for 1 < r < oo (see [22], [39] and [43]). A singular
integral operator, with kernel satisfying the L"-Hormander condition, 1 < r < oo,
satisfies a Coifman estimate with the maximal operator M, in the righthand side
(here M, f(x) = M(|f|")(x)"™). These estimates are shown to be sharp in [26].
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Let us notice that as r goes to 1 then 7’ goes to oo and the corresponding Coifman
estimates get worse. In particular, when K € H; one lacks of Coifman estimates (see
26]).

Sometimes, this scale of Hormander conditions based on the Lebesgue spaces is not
sufficiently fine and gives estimates that are not accurate enough. For instance, let us
consider the differential transform operator studied in [20] and [4]:

THf(x) = v (Dif(z) = D1 f(x)), (1.2)

JET

where ||{v;};||_. < oo and

1 x+27
Dif(a) =y [ Fleyar
We have that T is a singular integral operator with kernel K supported in (—o0,0),
and therefore T is a one-sided singular integral operator (that is the reason why
we write 7). In [4] it was shown that K € N,>1H, (here H, is the Hérmander
condition associated with L", see the precise definition below). Thus one can show
that 7" satisfies a Coifman estimate with M, in the righthand side for any 1 < ¢ < 0.
Indeed, exploiting the fact that 7" is a one-sided operator one can do better: M, f
can be replaced by the pointwise smaller operator M (;r f (the corresponding one-sided
maximal function) and A, by the bigger class AL (see the precise definitions and more
details below). Notice that one can take any 1 < ¢ < oo, with the case ¢ = 1 remaining
open (in general, K ¢ H..). Nevertheless, there are other maximal operators that one
can write between M (or M*) and M, (or M): any iteration of the Hardy-Littlewood
maximal function, or maximal operators associated with Orlicz spaces lying between
L' and L7 as L (log L)*, a > 0.

These ideas motivated [24] on which new classes of Hormander conditions based on
Orlicz spaces were introduce. Roughly, given a Young function A, associated with the
Orlicz space L* one can define a Hormander class H4 (see Definition 2.3). Thus, a
singular integral operator with kernel in H 4, is controlled in the sense of Coifman by
the maximal operator M4 (which is the maximal function associated with the space
LA) where A is the conjugate function of A. This was obtained in [24] as well as the
one-sided case (see Theorems 2.4 and 3.11 below).

For the differential transform 7" introduced above one can show that K & Hetl /(1+e)

for any € > 0. Thus T'" satisfies a Coifman type estimate with M;( on the right

log L)1 +=
hand side —in terms of iterations one can write (M*)3— and this maximal operator
is pointwise smaller than M, for any 1 < ¢ < oo.

Coifman’s estimates are important from the point of view of weighted norm inequal-
ities since they encode a lot of information about the singularity of the operator T’
(see [10] and [14]). In some sense, T' behaves as the maximal operator that controls it.
For instance, one shows that 7" is bounded on LP(w) for 1 < p < oo, w € A,. Also one
can see that T is of weak-type (1, 1) for weights in Ay, T is bounded on weighted re-
arrangement invariant function spaces, T' satisfies weighted modular inequalities (see
[14]), etc. All these one-weight estimates are based on the fact that (1.1) is valid for
any weight in A, and the weight always move within this class.
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The situation changes when one works with two-weight inequalities. Let us focus on
the end-point estimates for p = 1. In the one weight case, M is bounded from L'(w)
to L1*°(w) for every w € A;. Also, there is a version of (1.1) in the sense of L*°(w),
that is, [|Tf| p1c@) S 1M fllp10ow) for every w € Ay (see [10]). These two facts
imply at once that T is of weak-type (1, 1) for weights in A;. In the two-weight case,
Vitali’s covering lemma easily gives that for every weight u (a weight is a non-negative
locally integrable function)

Wz € R": Mf(z) > A} < ; / \F(2)] Mu(z) da.
However, this estimate is not known for the singular integral operators with smooth
kernel. Even for the Hilbert or the Riesz transforms the validity of this estimate is
an open question. Reasoning as above, one seeks for pairs of weight (u, Su) for which
these operators are of weak-type (1,1), where S will be a maximal operator worse, in
principle, than M. For instance, one can put S = M, for every 1 < ¢ < oo: using that
M,u € A; and Coifman’s estimate (in L) one easily obtains the estimate proved in
9]
1T fllreey < NTfllpreeatguy S M fllree gy S 1l arg-

As observed before, there are some other maximal operators that lie between M and
M, as the iterations of M or My o )e, @ > 0. In [32], by means of the Calderén-
Zygmund decomposition, it was proved that if 7" is a singular integral operator with

smooth kernel (say K € HX), as the Hilbert or Riesz transform, then for any ¢ > 0
and any weight u

wz e R": |Tf(x)] > A} < % / | f(x)| ML (10g ) u(z) da. (1.3)
Rn

Note that in terms of iterations one can write M?2.

The goal of this paper is to study estimates like (1.3) when the operator T has a
less smoother kernel. That is, if we impose that the kernel of T satisfies a Hormander
condition in the scale of Orlicz spaces, we seek for a maximal operator S so that T
is of weak-type (1, 1) with respect to the pair of weights (u, Su). The main technique
to be used is the Calderon-Zygmund decomposition. The bad part, where the best
possible result is always obtained, is handled by using the smoothness of the kernel.
For the good part, one needs a strong two-weight estimate that usually follows from a
Coifman estimate (see Theorem 2.6). We also obtain weighted end-point estimates for
the commutators of such operators with BMO functions. The corresponding Coifman
estimates have been studied in [23]. As one of our main examples is the differential
transform operator presented above, we also pay attention to the one-sided operators
in which case one can obtain better estimates by replacing a maximal operator by its
corresponding one-sided analog.

The paper is organized as follows. The following section contains some of the
preliminaries and definitions that are needed to state our results. In Section 3 we
state our main results on singular integral operators, their commutators with BMO
functions and also we consider the one-sided case. Some applications, including the
differential transform operator and multipliers, are given in Section 4. Finally Sections
5 and 6 contain the proof of our main results.
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2. PRELIMINARIES

2.1. Young functions and Orlicz spaces. We recall some of the needed background
for Orlicz spaces we refer the reader to [37] and [3] for a complete account of this
topic. A function A : [0,00) — [0, 00) is a Young function if it is continuous, convex,
increasing and satisfies A(0) = 0, A(co) = co. We will assume the Young functions
are normalized so that A(1) = 1. We introduce the following localized and averaged
Luxemburg norm associated with the Orlicz space LA: given a cube Q

N 1 ()
||f||A,Q—1nf{/\>O.@/QA(T) dr < 1}.

For instance, when A(t) =t with » > 1 then we have

1 fllrg = (ﬁ/@\f(x)rda:)r

It is well known that if A(t) < CB(t) for t > to then ||fllao < C| fllzo. Thus
the behavior of A(t) for t < ty does not matter: if A(t) ~ B(t) for t > t, the latter
estimate implies that ||f||.4.o ~ || f|l5- This means that in most of the cases we will
not be concerned about the value of the Young functions for ¢ small.

We can now define the Hardy-Littlewood maximal function associated with A as

My f(x) = sup || f[laq-
Q>

When A(t) = t then M4 = M is the Hardy-Littlewood maximal function. For
A(t) =t with r > 1 we have M4 f(x) = M(|f|")(x)"/".

Given a Young function A, we say that A is doubling, we write A € A, if A(2t) <
C A(t) for every t >ty > 0. For 1 < p < oo, A belongs to B, if there exists ¢ > 0

such that
/ < A(t) dt
— <0
.t ot

This condition appears first in [34] and it was shown that A € B, if and only if M4
is bounded on LP(R™).

Abusing on the notation if A(t) = ¢, A(t) = " — 1 or A(t) = ¢"(1 + log™ t)*, the
Orlicz norms are respectively written as || ||, = || - ||z, || - |lexpze, || - |2 (log £)» and the
corresponding maximal operators as M, = M, Meypre and Mpr (og 1)e. For k >0, it
is known that Mg s f(x) = M* f(2) where M* is the k-times iterated of M (see
[33], [38] and [14]).

In R, we can also define the one-sided maximal functions associated with a given
Young function A:

M f(z) = sup 1|4, (2,) and My f(x) = sup || f]l 4 ()
>z a<lx

The one-sided Hardy-Littlewood maximal functions M™, M~ correspond to the case
A(t) =t.

Given a Young function A, let A denote its associate function: the Young function
with the property that ¢ < A71(¢) ./Tl_l(t) <2t,t>0. If A(t) =t with 1 <r < o0,
then A(t) = t"; if A(t) = t"log(e + t)*, then A(t) ~ " log(e + t)~*"~1),
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One has the generalized Holder’s inequality

1
L / £l <20 flaolglio
A

There is a further generalization that turns out to be useful for our purposes, see [31]:
If A, B, C are Young functions such that A~ (¢) B~1(¢)C~1(¢) < t, for allt > t5 > 0 (in
what follows we assume that ¢, = 1 for simplicity and clearness in the computations),
—sometimes, we will equivalently write A~1(t) B71(t) < E_l(t)— then

Ifghllee < Clflasllglsellbllee  1fgllee < Clflaellglse  (2.1)

Remark 2.1. Let us observe that when D(t) = ¢, which gives L', then D(t) = 0 if
s < 1 and D(t) = oo otherwise. Although D is not a Young function one can see
that the space LP coincides with L. On the other hand, as the (generalized) inverse
is 5_1(t) = 1, the previous Holder’s inequalities make sense with the appropriate
changes if one of the three functions is D or D. We will use this throughout the

paper.

Remark 2.2. The convexity of A implies that A(t)/t is increasing and so t < C' A(t)
for all ¢ > 1. This yields that || f||z:1 5 < C'| f]|a,5 for all Young functions A.

2.2. Muckenhoupt weights. We recall the definition of the Muckenhoupt classes
Ay, 1 <p < oo. Let w be a non-negative locally integrable function and 1 < p < oo.
We say that w € A, if there exists C), < oo such that for every ball B C R"

(i 1) Gy <o)

when 1 < p < o0, and for p =1,

1
Bl / w(y) dy < Crw(x), for a.e. x € B,
B

which can be equivalently written as Mw(z) < Cyw(z) for a.e. x € R™. Finally we
set Aoe = Up>14,. It is well known that the Muckenhoupt classes characterize the
boundedness of the Hardy-Littlewood maximal function on weighted Lebesgue spaces.
Namely, w € A,, 1 < p < oo, if and only if M is bounded on LP(w); and w € A, if
and only if M maps L'(w) into L»*°(w).

In R, the weighted estimates for the one-sided Hardy-Littlewood maximal function
M™ (and analogously for M~) are modeled for the classes A which are defined as
follows. Given 1 < p < 0o, w € A;;, if there exists a constant C,, < oo such that for
alla<b<ec

(c—l 2 ( / (o) d:c) ( /b Cw(a) d:c)p_1 <G,

We say that w € AT if M—w(z) < Cyw(z) for a.e. © € R. The class AY is defined as
the union of all the Af classes, AL, = U,>1A. The classes A are defined in a similar
way. It is interesting to note that A, = AT N A, A, C AF and A, C A . See [41],
[27], [28], [29] for more definitions and results.
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2.3. Singular Integral operators and Hormader’s type conditions. Let 7" be
a singular integral operator of convolution type, that is, 7' is bounded on L?(R™) and

Tf(x)=pv. | K—y)fly)dy

Rn
where K is a measurable function defined away from 0. Convolution operators are
considered for simplicity, but the results presented here can be stated for variable
kernels with the appropriate changes. The precise statements and the details are left
the reader.

When n = 1 and we further assumed that the kernel K is supported on (—o0,0)
we say that T is a one-sided singular integral and we write T to emphasize it. The
results that we present below for (regular) singular integrals apply to 7. However,
taking advantage of the extra assumption on the kernel, one can be more precise and
get better estimates (see Section 3.3).

We introduce the different Hormander type conditions assumed on the kernel K.
The weakest one is the so-called Hérmander condition H; (we simply say K € H; or
K satisfies the L'-Hormander condition): there are constants ¢ > 1 and C' > 0 such
that

/ |K(x —y) — K(z)|dz < C, y € R".
|lz|>clyl

The strongest one is the classical Lipschitz condition called H* (this notation is not
standard but we keep H., for a weaker L>°-condition, see the definition below). We
say that K € HZ_ if there are o, C' > 0 and ¢ > 1 such that
K —9) - K@) <O, ol > el

Between H; and HZ, one finds the L™-H6rmander conditions (which are called Hpr =
H, in the definition below). These classes appeared implicitly in the work [22] where
it is shown that classical L"-Dini condition for K implies K € H, (see also [39] and
[43]). However, there are examples of singular integrals like the differential transform
operator from Ergodic Theory defined in (1.2), whose kernel K € H, forall 1 <r < oo
but K ¢ H,. Asit was obtained in [23], K satisfies a Hormander condition in the scale
of the Orlicz spaces that lies between the intersection of the classes H, for 1 <r < oo
and H,,. The same happens with the one-sided discrete square function considered
in [42] and [24]. All these things have motivated the definition of the LA-Hormander
conditions in [24]:

Definition 2.3. The kernel K is said to satisfy the LA-Hormander condition, we
write K € H 4, if there exist ¢ > 1, C' > 0 such that for any y € R™ and R > c|y],

[e.9]

Y @MR)K(—y) = K()l|afsemr < C.

m=1
We say that K € H, if K satisfies the previous condition with || - || o |z|~2m g in place
of I - [l jaf~2m -

We have used the notation: |z| ~ s for s < |z| < 2s and

1l ajzivs = 11 X gajesy lla,B025)-
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Note that if A(t) = ¢ then H4 = H;. On the other hand, since t < C' A(t) for t > 1 we
have that H4 C H; which implies that the classical unweighted Calderén-Zygmund
theory can be applied to 7. Also, it is easy to see that HY C H, C Hy4. For
convenience thorough this paper we write | - | = | - | so that everything is adapted
to cubes in place of balls (with the appropriate changes everything can be written in
terms of balls). For simplicity we also assume that ¢ = 1.

Coifman type estimates were proved for kernels in these classes in [24]:

Theorem 2.4 ([24]). Let A be a Young function and let T' be a singular integral
operator with kernel K € H4. Then for any 0 < p < oo and w € A,

/Rn TH@)Pw@) de <C [ MyfPw)de, el (2.2)

Rn
whenever the left-hand side is finite.

Note that this improves the previous results in [22], [39] and [43] (for sharpness
issues see also [26]). Similar results are also proved for vector-valued and one-sided
operators (see [24]).

Remark 2.5. Abusing on the notation, as in Remark 2.1, if K € He, then (2.2)
holds with Mz = M, where A(¢t) = ¢t. This was obtained in [26] improving the
corresponding result for the smaller class HZ..

The previous estimates are useful in applications as one has that 7" and M- have
a similar behavior (see [14]). For instance, two-weight estimates can be proved in the
following way:

Theorem 2.6 ([23]). Let A be a Young function and 1 < p < oo. Suppose that
there exist Young functions D, € such that £ € By and D~ (t) E71(t) < ./Tl_l(t) for
t >ty > 0. Set D,(t) = D(t'/?). Let T be a linear operator such that its adjoint T*
satisfies (2.2). Then for any weight u,

/Rn |Tf(x)|Pu(x)de < C /Rn | f(x)|P Mp,u(z) dx. (2.3)

Remark 2.7. Abusing in the notation, the previous result contains the case A(t) = t
on which in (2.2) one has Mz = M. Then, D and £ are conjugate functions and so
(2.3) holds for any D, such that D € B,. In particular, in (2.3) we can take the pair
of weights (u, M (1 yp-1+4su) for any § > 0: pick D(t) = 7 (1 + log® t)P~119 whose
conjugate function is D(t) ~ t*' /(1 +log* ¢)'H ¥~V ¢ B ,.

3. STATEMENTS OF THE MAIN RESULTS

3.1. Singular integral operators. We are going to obtain endpoint two-weight
norm inequalities for singular integral operators where different Hormander’s con-
ditions are assumed on the kernel. Namely, we seek for the following weak-type (1,1)
estimates with pairs of weights (u, Su) where S will be a certain maximal function
depending on the smoothness of the kernel:

Wz € R : [TH()| > A} < %/ |f(2)] Su(z) dz. (3.1)

n
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Theorem 3.1. Let T' be a singular integral operator with kernel K.

(a) Let A be a Young function such that its complementary function A€ Ay and
assume that there ezists r > 1 so that liminf, ., A(t)/t" > 0. If K € Hy then
(3.1) holds for the pairs of weights (u, Mu).

(b) Let A be a Young function and assume that there exist 1 < p < 0o, and Young
functions D and & such that D™ (t) E71(t) < .,Tl_l(t) fort >ty > 0 with € € Byy.
If K € Hy then, (3.1) holds for the pairs of weights (u, Mp,u) with Dy(t) =
D(t'/7).

() If K € Hu, then (3.1) holds for the pairs of weights (u, Mpogr)-u) for any
e>0.

Remark 3.2. In part (¢) we improve [32], as we consider a wider class of kernels
H* C H..

Remark 3.3. Let us notice that when liminf, .., A(t)/t" > 0, the pair of weights in
(a) is better than the one in (b): one can see that A(t) < D,(t) for t > 1. Take an
arbitrary + > 1. The fact that & € B, implies £(t) < . Also, A(t) > t as A is
a Young function. Then, from the condition assumed on A, D and & it follows that
D~1(t) < tY/? and therefore

ANt =DM ET ) 2 DT /DT 2 DT = D),

p

Remark 3.4. We would like to emphasize that in part (a) the associated Coifman
estimate in Theorem 2.4 tells us that 7" is controlled by M. Here we show that
the pair of weights of the form (u, Mzu) is valid. In the previous remark, we have
observed that in (b) one gets a bigger maximal operator Mp,. In many applications,
although we take p very close to 1, we always obtain a maximal operator pointwise
greater than M—. This is the case in (¢) which covers the classical Hilbert and Riesz
transforms. Here as these operators are controlled by M (in the sense of Coifman) one
would wish to show that the pair of weights (u, Mu) is valid. However this remains
as an open question and the best known result is (u, M (iog £)-1).

There is a general extrapolation principle that allows one to pass from pairs of
weights (u, Su), with S being a maximal operator, to general pairs of weights (u,v).
The main ideas are implicit in [12], [13] and are further exploited in [11]. Below we
present a proof in the one-sided case (see Theorem 3.14), that can be easily adapted
to the present situation.

Theorem 3.5. Let F be a Young function and assume that a given operator T satisfies

uw{z € R": |Tf(x)] > \} < %/ |f(z)| Mru(zx)dz (3.2)

n

for every weight u and A > 0. Given 1 < p < o0, let G, H be Young functions such
that G~Y(t)H 1 (t) < F~¢t) for allt >ty > 0 and H € By. Then for any pair of
weights (u,v) satisfying

luPllg.q o™ Pl g < € (3:3)
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and for any and A > 0 we have
C
ulz €R™: [Tf(2)] > A} < 7 \f( )P v(x) de. (3.4)

3.2. Commutators with BMO functions. We are going to consider commutators
of singular integral operators with BMO functions. Let us remind that a locally
integrable functions b is in BMO if

1
||bl|BMO = sup — / b(z) — bg| dz < oo,
Q 1Ql Jg

where the sup runs over all cubes () C R™ with the sides parallel to the coordinate
axes and where by stands for the average of b over ).
We define the (first-order) commutator by

T, f(z) = [, T)f(x) = b(x) Tf(x) = T(b f)(x).
The higher order commutators T} are defined by induction as T} = [b, T*~!] for k > 2.
Note that for every k > 1

T} f(z) = pov. / (b(z) — b(y))* K (x — 1) f(y) dy.

n

For k = 0 we understand that 7)) = T..

In [23], Coifman type estimates were proved for commutators of singular integral
operators with kernels in the following Hormander classes that depend on the order
of the commutator.

Definition 3.6. Let A be a Young function and k € N. We say that the kernel K
satisfies the LA*-Hormander condition, we write K € Hyp, if there exist ¢ > 1 and
C' > 0 (depending on A and k) such that for all y € R™ and R > c|y|

o0

> @ R)"mF|K(-—y) = K()llajafam r < C.

m=1
We say that K € Huy, if K satisfies the previous condition with || - || Lo jgj2m r 10
place of || - || a,jz|~2m R-

As before, for simplicity we will assume that ¢ = 1. For these classes the following
Coifman estimates are obtained:

Theorem 3.7 ([23]). Let b € BMO and k > 0.
(a) Let A, B be Young functions, such that 7(71(15) B7(t) Ekfl(t) <t fort>ty>0

with Ci(t) = et — 1. If T s a singular integral operator with kernel K €
Hp N Hay, (or, in particular, K € Hgy), then for any 0 < p < oo, w € A,

T ) wla) do < Clbliho [ Maf@Pula)ds,  feLlz,  (35)
Rn
whenever the left-hand side s finite.

(b) If K € Huo N H e, (or, in particular, K € Hu.y) then (3.5) holds with M*+1
—the k + 1- ztemtzon of M — n place of M.
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This result and Theorem 2.6 can be used to derived endpoint estimates of the form

u{z € R": [Tf f(z)| > A} < C /Rn Cr (M) Su(x) dx, (3.6)

where Ci(t) =t (1 + log™ t)*.

Theorem 3.8. Let T be a singular integral operator with kernel K, k € N, b € BMO
and T} the k-th order commutator of T

a) Let A, B be Young functions such that A'WB e (¢ <t fort>ty>0
k
with Cp(t) = " — 1. Let K € HgN H oy (or, in particular, K € Hgg).

(a.1) If A€ Ay and there exists v > 1 so that liminf, ., A(t)/t" > 0, then (3.6)
holds for the pairs of weights (u, Mzu).

(a.2) Assume that there exist 1 < p < oo, and Young functions D and &€ such
that D1(t) E71(t) < ./Tl_l(t) fort >ty >0 with £ € By. Then, (3.6) holds
for the pairs of weights (u, Mp,u) with D,(t) = D(t'/?).

(b) If K € HoNH x, (or, in particular, K € Hy ), then (3.6) holds for the pairs
of weights (u, Mg pys+=u) for any e > 0.

Remark 3.9. In part (b) we obtain the same result as in [35], but considering a
weaker condition on the kernel K, since HY C H,, N Hetl/k "

Remark 3.10. Notice that we can understand (b) as an extension of (a) when B
corresponds to L and so A(t) = Cj(t) = ¢''’* — 1. Observe that in that case we also
have A~ (£) B-1(t)C, ' (t) < t (where B-1(t) = 1).

This result can be extended to the multilinear commutators considered in [36].
Given k > 1, a singular integral operator T' with kernel K and a vector b = (by, ..., by)
of locally integrable functions, the multilinear commutator is defined as

k

Tif(x) = / (H (bi(w) = bz(@/))) K(z,y) f(y) dy.

When £ = 0 we understand that T; = T". Notice that if £ = 1 and b = b then T, =1,.
For k> 1if by = --- = b, = b then Ty = T}.

For standard commutators, one assumes that b € BMO, and by John-Nirenberg’s
inequality we have that ||b][smo ~ supg ||b—bgllexpz- This can be seen as a supremum
of the oscillations of b on the space exp L.

As it was done in [36], when dealing with multilinear commutators, the symbols b;
are assumed to be in one of this oscillation spaces. Given s > 1 we set

“fHOSC(eXpLS) = Slclgp If — fQHeXpLS

and the space Osc(exp L*) is the set of measurable functions f € L] _(R"™) such that

loc

| f Il osc(exp £+) < 00. Let us notice that Osc(exp L¥) C Osc(exp L') = BMO. We assume
that for each 1 <[ < k, b, € Osc(exp L*) with s; > 1. We set % =1l 4... 4 i,

S1
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For these commutators in [23, Theorem 7.1] it is shown that under the previous
conditions if K € Hpj, and A B @) @Ji(t) < t with Cy/5(t) = €', then T;
satisfies a Coifman estimate with M on the righthand side. In the case K € Hy,
the maximal operator is M (4, 1y1/s- In this way, we can extend Theorem 3.8 to the
multilinear commutators: in (a) we assume K € Hp) and replace k by 1/s, and in
(b) we assume K € H. and replace k by 1/s. The precise formulation is left to
the interest reader. The proof of this result follows the same scheme, see Remark 5.2
below.

3.3. One-sided operators. In R we can consider a smaller class of operators and
obtain estimates for the so-called one-sided operators. These are singular integral
operators with kernels supported on (—o0,0) and we write 7" to emphasize it. One
can also consider operators T~ with kernels supported on (0, 00), for simplicity we
restrict ourselves to the first type.

Let us highlight that one-sided operators are singular integral operators, therefore
the previous results can be applied to them. However, exploiting the fact that they
are supported on (—o0,0) one can obtain better estimates. For instance, if K € HY,
(indeed K € H, suffices) then T can be controlled by M on LP(w) for every 0 < p <
oo and w € Ay, consequently T is bounded on LP(w) for every w € A,, 1 < p < oc.
These follow from the classical theory for Calderén-Zygmund operators. Moreover,
exploiting the fact that the kernel of T'* is supported on (—o00, 0) one can do better: in
the Coifman estimate we can write the pointwise smaller one-sided maximal operator
M™ and consider a bigger class of weights w € AL ; thus 7" is bounded on LP(w) for
every w € AF, 1 < p < oo (note that we have that A, C AF).

The same happens with Theorems 2.4, 3.7 and 2.6:

Theorem 3.11 ([24], [23]). Let T be a one-sided singular integral operator with
kernel K supported in (—00,0).

(1) Under the assumptions of Theorem 2.4 or 3.7, one can improve (2.2) and (3.5):
A is replaced by the bigger class of weights AL, and My is replaced by the

pointwise smaller operator M% —in (b) of Theorem 8.7 M*! is replaced by
(M1

(17) Under the assumptions of Theorem 2.6, if the adjoint of TT —which is a one-
sided operator with kernel supported on (0,00)— satisfies (2.2) for all 0 < p <
0o, w € A and with Mif on the righthand side, then, for any weight u, it

follows that T wverifies (2.3) with Mp, u in place of Mp,u.
Here, we can obtain one-sided versions of Theorems 3.1 and 3.8:

Theorem 3.12. Let T be a singular integral operator with kernel K supported in
(—00,0).

(1) Under the assumptions of Theorem 3.1, then T satisfies (3.1) for the pairs of
weights (u, MZu) in (a), (u, Mp u) in (b), and (u, M[ ., 1)-u) in (c).
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(13) Under the assumptions of Theorem 3.8, then Tb+’k —uwhich is the k-th order
commutator of TT— satisfies (3.6) for the pairs of weights (u, Miu) in (a.1),
(u, Mp u) in (a.2), and (u, M, u) in (b).

L (log L)k+e

Remark 3.13. In (i) when K € H,, we improve the results in [1] where the stronger
condition K € H was assumed. For example of these kernels see that reference.

We can also get an improvement of the estimates in Theorem 3.5 when we start
with pairs based on one-sided maximal functions:

Theorem 3.14. Let F be a Young function and assume that a given operator T
satisfies (3.2) with Mz in place of My. Let 1 < p < oo, and G, H as in Theorem 3.5.
If (u,v) is a pair of weights such that, for alla < b < c withb—a < ¢ —Db,

1 llg. ay 1072l 1 ) < C

we have for all A > 0

w{zeR:|Tf(x \>)\}_)\p/]f )P o(

Let us notice that here one does not need to work with one-sided operators as this
abstract result does not use any property of 7" but the initial two-weight estimate
which involves the one-sided maximal function M ;. Notice that when applying this
result 7" will be T or TbJr * from Theorem 3.12.

To prove this Theorem 3.14 we need to find sufficient conditions on (u,v) that
guarantee the boundedness of M from LP(v) to LP(u). This result with Mz appears
n [12] and here we extend it to the one-sided case. For convenience we state it in
terms of M and to pass to Mz one just switches the intervals of integration in the
corresponding Muckenhoupt type condition.

Theorem 3.15. Let 1 < p < oo and let A, B, C be Young functions such that
B7l(t)C7H(t) < A7Y2), for allt >ty > 0, with C € B,. If (u,v) is a pair of weights
such that, for alla < b < c withb—a <c—0b,

14?1 o |07 5, 00) < C, (3.7)

then

[ sy e e < ¢ [ 1f@P o) do

4. APPLICATIONS

In this section we present some applications. As we have already observed, our
results include those in [32] and [35] for Calderén-Zygmund singular integrals operators
with kernels in Y. We observed before that weaker conditions on the kernels, say
Hy for T and K € H,, N Hetl/kJ€ (or, in particular, K € H ) for T}, lead us to the

same conclusions.
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4.1. The differential transform operator. Consider the differential transform op-
erator studied in [20] and [4]

T f(x) = ZV]' (D;f(x) = Dj—1 f(x)), (4.1)

where ||{Vj}j||oo < 00 and

x+27
Dif(a) =y [ sy

This operator appears when studying the rate of convergence of the averages D;f.
Let us observe that D;f — f a.e. when j — —oo and D;f — 0 when j — ooc.
Notice that T f(z) = K * f(x), where

1 1
K(x) = Z Vj <2—] X(2.0)() = 2i-1 X(2ﬂ'1,0)($)) '

JEZ
Observe that K is supported in (—o0,0), and therefore T is a one-sided singular
integral operator (so we write 7). In [4] it is proved that, for appropriate f,

N2
T+ — li (D —D._ f .. cR.
flz) (N17N2)£I(1700,oo) ;1 g ( Jf(x) J 1f(1’)) or a.e. r

It was shown that K € N,>1H, and so T is bounded on LP(w) for all w € A7,
1 < p < 0o, and maps L'(w) into L' (w) for all w € Af.

When trying to prove Coifman type estimates for 7", one obtains that 7" is con-
trolled by M for every 1 < s < oco. In general K ¢ H. (see [23] for the case
{v;} = {(—1)7}), thus it is not clear whether one can take s = 1, that is, whether T'*
behaves as a one-sided singular integral operator with smooth kernel. This motivates
the new Hérmander’s type conditions in [24], [23]: If one shows that its kernel belongs
to some class near L> then one would obtain a maximal operator near M ™. In [23] it
was shown that K € Hetl/(1+s) for any € > 0 and that K € Hetl/(l+k+a) . for any € > 0
and k > 1. Thus, by Theorems 2.4 and 3.7 for any £ > 0, ¢ > 0, 0 < p < oo, and
we AL

K
/R’sz f@)Pw(z)de < C /RME_(logL)k+l+ef(l')p'I.U(l') dz.
Applying Theorem 3.12 we obtain the following end-point estimates:

Theorem 4.1. Letb € BMO and k > 0. Let T be the differential transform operator
defined above, and let T;“k be its k-th order commutator. Then, for any e > 0,

oo e g4 > 3 <0 [ e () argpsuto)
for all X > 0.

Note that this result includes the case £ = 0 on which Tlf 0 —

Remark 4.2. One can write the last estimate in terms of iterations of M~ since

ML_(logL)HHEu(x) < O(M~)k3u(z), for ¢ > 0 small enough. Thus, the previous

estimate holds for the pair of weights (u, (M ~)k3u).
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Proof of Theorem 4.1. Given k > 0 and € > 0 we fix D(t) = t? (1 + log" t)k+1+e
so that D,(t) ~ t(1 + log™ )" 1+, We take 1 < p < 1+ ¢/(2(k + 2)), A(t) ~
exp(t!/(+k+e/2P)Yy — 1 and B(t) =~ exp(t'/(1+5/2P)) — 1. Then, as mentioned before
K € Hp N Hyy (note that for & = 0, we just have K € Hj4). We also notice
that for & > 1 it follows that .7(71(75) B~1(t) Ekfl(t) < tfor t > 1. Next, we pick
E(t) =t /(1 + log™ t)s®-1/2=(:+1) and observe that our choice of p guarantees that
e(p'—1)/2—(k+1) > 1, therefore £ € B,. Besides, we have D~!(¢) E71(t) < 7(_1(75)
for t > 1. Then applying Theorem 3.12, that is, the one-sided version of Theorem 3.1
part (b) when k£ = 0, and the one-sided version of Theorem 3.8 part (a.2) when k > 1,
we conclude the desired estimate. U

As a corollary of Theorem 4.1, applying Theorem 3.14 we get the following weak-
type estimates for general pairs of weights (u,v):

Corollary 4.3. Letb € BMO and k > 0. Let T be the differential transform operator
defined above, and let Tlf’k be its k-th order commutator. Then, for anye > 0, if (u,v)
s a pair of weights such that, for alla < b < c withb—a < c—b,

Hul/pHLP (log L)(k+2) p=1+¢ (q.b) ||U_1/p||Lp’,(b,c) <C,

we have for all A > 0
wle € R: 541 () > 0) < 1 [ 7@ ole) de
R

The proof of this result follows at once from Theorem 3.14. The starting estimate
is given by Theorem 4.1, so F(t) = t (1 + log™ t)*™1*¢ for every € > 0, and we take
H(t) = 7" /(1 4+ log* t)'*% € B for any d > 0. This leads to the desired function G.
Details are left to the interested reader.

4.2. An example of a one-sided operator with K € H, N H ,1/x . We consider
the one-sided operator

T+f(;lj) = Z Vj (D]f(l') — Dj,lf(x)),
JEZ
where ||{Vj}j||oo < oo and

x+27
D) = s | S0
Observe that
1 1
K =2 v (W Xewol®) = iy G —1p) Xewo (”) |

=

This operator is similar to the previous one. In [23] was proved that K € H,,NH RV
Thus, by Theorems 2.4 and 3.7 for each k > 0, 0 < p < oo, and w € AL

/R T,7F f ()P w(x) de < C /R M oy e f (@) w(2) da. (4.2)

Note that in the righthand side one can alternatively write (MT)*!f as (M )1 f ~
M[J/r(logL)kf a.e.. We apply Theorem 3.12, that is, when k£ = 0 we use the one-sided



16 M. LORENTE, J.M. MARTELL, C. PEREZ, AND M. S. RIVEROS

version of Theorem 3.1 part (¢), and when & > 1 we employ the one-sided version
of Theorem 3.8 part (b). Thus, we conclude the following end-point estimates: given
b € BMO, for every k > 0 and for any € > 0

uw{r eR: ]T;’kf(x)|>)\}§C’/RC;€<|f(x)|) M, u(z) de. (4.3)

X (log Lyk-+
Note that taking ¢ > 0 small enough, ML_(lOgL)HEu(:z:) < C(M™)F2y(x).

Remark 4.4. In terms of iterations of the one-sided Hardy-Littlewood maximal func-
tion, notice that in (4.2) we have k 4 1 iterations and in (4.3) we have k + 2, so we
obtain an extra iteration. This is because in (c¢) of Theorem 3.1, in (b) of Theorem 3.8
and in their corresponding versions for one-sided operators we loose a small power of
the logarithm. This happens also with Calderén-Zygmund operators with smooth ker-
nel as the Hilbert and Riesz transforms: they are controlled, in the sense of Coifman,
by M, but the end-point estimate holds for the pair of weights (u, M?u) —indeed one
can write (u, M (log L)eu) for any € > 0—. It is not known, even for the Hilbert and
Riesz transforms, whether the pair of weights (u, Mw) is valid for the corresponding
weak-type estimate.

Notice that in the case of the differential transform operator in both the Coifman
inequality and the end-point estimate the number of iterations for the k-th order
commutator is k+ 3. This happens as we already have a small power of the logarithm
floating around.

From Theorem 3.14 proceeding as in Corollary 4.3 we obtain the following two-
weight weak-type estimates: given b € BMO, for every k > 0 and for any £ > 0 if
(u,v) is a pair of weights such that, for all a < b < ¢ with b —a < ¢ — b,

Hul/p”LP (log L) (k+1) p=14¢ (a,b) ”U*UPHLP’,(W <G,

then T,”"f maps LP(v) into L”»*(u). This extends the sharp results obtained in
[12] for Calderén-Zygmund operators with smooth kernels to the setting of one-sided
operators.

4.3. Multipliers. Let m € L>(R") and consider the multiplier operator 7" defined

a priori for f in the Schwartz class by T'f(§) = m(§) f(§). Given 1 < s < 2 and
0 <! € N we say that m € M(s,l) if

sup RN | D*m| s jejor < +00, for all |a] <.
R>0

In [23] it was proved the following: let m € M(s,l), with 1 < s <2, 0<1[<mn
and [ > n/s. Then for all £ > 0 and any € > 0 we have that for all 0 < p < oo and
wE Ay,

/ ITF f(2)|Pw(x)de < C / M, jise f(2)P w(z) d. (4.4)
Rn n

The proof of such estimates consists in obtaining that a family of truncations of
the kernel {K"}y are uniformly in Hpr o pyery with ' = n/l + ¢ Thus, taking
A(t) =t", B(t) =" (1 4+ log* t)*" we have K € Hz N H 4y (this follows easily from
KN € Hprogryeri). Notice that 7171(25) B~1(t) E;l(t) S tfor t > 1 and therefore
(4.4) follows from Theorem 3.7 for the k-th order commutators of TV (which is the
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operator whose kernel is KV) with constants that are independent of N. A standard
approximation argument leads to the desired estimate for T;*. We refer the reader to
[23] for more details.

The same argument allows us to apply Theorem 3.1 part (a) and Theorem 3.8
part (a.1) to TV. Observe that A(t) = ", then choosing 1 < s < r’ we obtain
liminf; .., A(t)/t* = +00. Therefore, taking limits we have the following result:

Theorem 4.5. Let m € M(s,l) with1 <s<2,0<[1<n andl>n/s. Then for all
k>0 and any € > 0 we have

x
w{z €R": |TFf(x)| > A} <C | G (|f(/\ )|> M, jipeu(zx)) d.
R’ﬂ
From this estimate one can obtain weak-type estimates for general pairs of weights
by using Theorem 3.5. The precise statements are left to the reader.

4.4. Kernels related to H, and M. Implicit in [39] (see also [22], [43]) and as
it was observed in [26] when K € Hp-, that is, when the kernel satisfies the L'-
Hoérmander condition, then one obtains that T is controlled by M, ... In [23] different
extensions of that inequality for the higher order commutators where considered.
Following the notation of Theorem 3.7 these are the different conditions and maximal
operators obtained: for every 1 < r < oo and k£ > 0, we have

Hg, Hp N Hpyp, Mz f
Hpr Hpr VHpr (log Ly—k7 i M og Lyer |
Hir tog 1yer Hir og 1y O Hir g M, f
Hirog e | Hirog 1y N Hepr og )=k =0 | Mot og ye f & (M )+

TABLE 1. Examples of different H,-conditions

Thus, applying Theorem 3.1 part (a) and Theorem 3.8 part (a.1) we obtain that
T} satisfies (3.6) with the different pairs of weights (u, Mzu) in the previous table.

4.5. Homogeneous Singular Integrals. Denote by > = ¥, | the unit sphere on
R™. For x # 0, we write 2/ = z/|z|. Let us consider 2 € L*(X). This function can be
extended to R™\ {0} as Q(z) = Q(z’) (abusing on the notation we call both functions
Q). Thus Q is a function homogeneous of degree 0. We assume that [, Q(z')do(2') =
0. Set K(z) = Q(x)/|z|™ and let T be the operator associated with the kernel K.

Given a Young function A we define the L*-modulus of continuity of {2 as

wa(t) = sup (- +y) = 2()[ax
ly|<t

Given Q € LB(X) and T be as above. Let k > 0 and A, B be Young functions such

that A ' (t)B~1(t)C, '(t) <t for all t > 1. If

! dt ! 1\* dt
/wB<t)7+/ <1+log¥> @aAlt) T < o0,
0 0
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then it was proved in [23] that K € Hg N H 4 and therefore

/Rn \Tbkf(x)]pw(x) de < C Mz f(z)? w(z) dz,

R
for every 0 < p < oo and w € Ay

Once it is known that K € Hg N Hyy one can apply Theorems 3.1 and 3.8 to
derive the corresponding two-weight end-point estimates. The precise statements and
further details are left to the interested reader.

5. PROOFS OF THE MAIN RESULTS

Proof of Theorem 3.1. Without loss of generality we can assume that u is bounded
and has compact support (otherwise we prove the corresponding estimate for uy =
min{u, N} X g n) With bounds independent of N and apply the monotone conver-
gence theorem). We assume that 0 < f € L>°(R") and consider the standard
Calderén-Zygmund decomposition of f al level A: there exists a collection of max-
imal (and so disjoint) dyadic cubes {Q;}; (with center z; and sidelength 27;) such
that .

A< — f<2"A (5.1)

’Q]| Qj

We write f = g + h where

g=1 XR"\Uij+ZfQJ XQj’ h = Zh _Z f fQJ> XQ]

where fq. denotes the average of f over ();. Let us recall that 0<g(x) <2"\ae.
and also that each h; has vanishing integral. We set @j = 2Q;, Q= Uij, and
U =1Uu Xgnq- Then,

u{r € R" : [Tf(z)] > A} < w(Q) +uf{z € R"\ Q: |Th(z)| > \/2}
+ufz e R*"\ Q: [Ty(z)| > \/2}
=I+1I+1II

We estimate each term separately. The estimates for I and I are obtained in the
same way in the three cases (a), (b) and (c). We show that

S )\ f( ) Mu(z) dz, ITS < )\ f( ) Mzu(z) dz, (5.2)
where, in case (c), as K € Hy, = Hp it is understood that A(t) =t so Mz = M1 =
M. Let us observe that both estimates lead us to the desired conclusions in the three
cases (a), (b) and (c). Regarding I, Mu is controlled by Mzu in (a) —as A is a Young
function—, by Mp,u in (b) —as we pointed out in Remark 3.3 that D~'(t) < t'/ for
t > 1 which yields D,(t) > ¢ for t > 1— and by M 1oz )= in (¢). For 11, Mzu is
the desired weight in (a); in (b) we observed in Remark 3.3 that Mzu < Mp, u; and
in (c) we have M_u = Mu < M7, (10g )= U-
Let us show the first estimate in (5.2). By (5.1) we have

1= < Tu@) =2 3 o)< T LU [ sy

Qj
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2" 2”
SXZ f(@) Mu(z) dv = f() u(z) de.
i Y9
Next, we estimate /1: as the functions /; has vanishing integral

H:u{xER”\Q:’ZThj(a:‘>)\/2 Z/H\Q|Th )| u(x) do

2
<2 / \/ (¢~ 4) ~ K(x — q,)) hy(y) dy u(z)
32 o

— h; K(x—y)— K(z —xg.)|u(x) dx dy.
S)\;/Qj\](yﬂ [ V=) = K =) u(a) e dy

We claim that for every y € (); we have

J

/ |K(x —y) — K(z — 2q,)| u(v) dx S ess inf Mzu. (5.3)
R™M\Q; Q

This estimate drives us to

1 1
7 < X ZessQijnf Mzu /Qj |h;(y)| dy < X ZessQijnf Mzu o f(y)dy

—AZ MAu<>dy<— [ Fly) Meguly) dy.

We obtain (5.3): using the generalized Holder’s inequality for A and A (when K € H,
we understand that A(t) = ¢ and so we have the corresponding L' — L> Holder’s
estimate)

| K@= y) = Ko a0,) u(e) ds
R™MQ;

<> K2 —y) - Kz — 2q,)| u() de

k=1 |x_ij‘N2k Tj

0o
@) IEC =) = K( = 20,)| aje-sq, vz, [l s j<2r1,

< C ess inf Myu,
Qj

where in the last estimate we have used that K € H 4.

To complete the proof, it remains to estimate I71. Here, the proof changes in each
of the cases. We start with (a). As liminf; ., A(#)/t" > 0 then there exists ¢ = ¢,
such that A(t) > ct” for every t > 1. On the other hand, using that A € A, there
exist 1 < s < oo (indeed we can take s > r) such that A(t) < C't* for every ¢t > 1
(this follows by iterating the Ag-condition). Then, taking p > s we have

I =u{z e R"\ Q:|Tg(zx)| > A/2} < %/}Rn |Tg(x)|P a(x) dx

[ ro@P M) do 5 L [ Mgglay M@y dr, (54

_)\P NP
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where in the last inequality we have used Theorem 2.4 and the fact that M,u € A, C
A as r > 1. Notice that one has to check that the left-hand side of (2.2) is finite.
Indeed, as we have assumed that u € L* we have

/ Tg(@)P Mya(e) dr < [lull / Tg(@)P de < Jlufo~ / 9P da
Rn Rn

n

< ullz= W / g(2)dz = lullpe N7 [ fl2)de < oo,
n ]Rn

where we have used that 7" is bounded on LP(R™) as K € H4 C Hy; and also that f
and u are bounded with compact support. We can continue with the estimate of I11:
as A(t) < C't® for every t > 1 it follows that

1 1
I < — Mg(x)? M, u(x)de = — M (g*)(z)P'* Mya(z) d

~ )\p R )\p R™
1 1
S 7 g9(x)? Myu(z) de S W Jy 9(@)? Mzu(x) dz, (5.5)
]Rn

where we have used that M, € A, therefore M is bounded on LP/5(M,1) and also
that A(t) > ct” for every t > 1. We claim that

/ g(z) M7zu(z) dr < / f(x) Mzu(x) de. (5.6)
UjQj UjQj
From (5.5), this estimate and the fact that 0 < g(x) < 2™ X a.e. yield
1 1 1
IIT < —/ g(z) Mzu(z) de = —/ f(x) Mzu(x) dx + —/ g(z) Mzu(z) dz
A Jre A R™M\U;Q; A U;Qj

1

$3 /] sz <5 [ fe) Mauta) de,

which is the desired estimate for I11.

To complete the proof of (a) we need to show (5.6). We first obtain that for any
Young function C, any weight v with Mcv < 0o a.e, and any cube ) we have

Me(v Xgmag)(y) = esieig?lf Me(v Xgno0) (%), a.ey € Q. (5.7)

Let y € Q and R be any cube such that y € R. If R\2Q = O then [[v Xgn\2¢ lle.r = 0.
Otherwise, we have that ¢(R) > ¢(Q)/2 which implies that ¢ C 5 R. Then,

||UXRn\2Q le.r S ||UX]R"\2Q lesr < esgeiélf Me(v XR“\QQ)(’Z)?

and taking the supremum over all the cubes R 3 y we conclude the desired estimate.
Next, we use (5.7) to obtain (5.6):

/U]Q] g(x) Mzu(x dx—Z/ x) Mzu(x dx—ZfQj/ Mx(a XR”\QQ)()d
Z x)dx oss. 1nf Mz (1 X g 2q,)(2) < Z/Qf(:v) Mog( X gmag,) (%) da

= / f(x) Mzu(x) dx.
U;Qj
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This completes the proof of (a).

To show (b), we only have to estimate I/I. The argument is very similar, the
main change consists of proving (5.5) with D, in place of A. Once we have that,
the argument presented above adapts trivially to the present situation and so the
desired estimate for 111 follows. Note that our hypotheses guarantee that we can
apply Theorem 2.4 to the adjoint of T —let us observe that 7% = T where T is the
singular operator with kernel K (z) = K(—z) € H4— and then Theorem 2.6 yields

I =u{x e R"\ Q: |Tg(zx)| > A/2} < %/}Rn |Tg(x)|P u(x) dx

1
< v /. g(x)? Mp,u(z) dx. (5.8)
As just mentioned, the ideas used before applied straightforward and the desired
estimate follows at once.

Finally, we show (¢). Given e > 0 we pick p > 1 and § > 0 so that p—1+6 = € (note
that p is taken very close to 1 and ¢ very small). Then, by Remark 2.7, (2.3) holds for
the pair of weights (u, M, 1og)=u). Then, the previous case mutatis mutandis leads
us to the desired estimate.

Remark 5.1. There is another argument to derive (¢): Given € > 0 we pick p > 1 and
§>0,sothat p— 1426 =¢. Let A(t) = t (1 +1og")%?. Note that H,, C H4 and so
K € Hy. Wetake D(t) = t? (1+log™ t)P712% and £(¢) ~ t*' /(1+logt )1 '~V € B,
Then, we can apply (b) to obtain the desired estimate for the pair of weights (u, Mp,u).
To conclude we observe that D,(t) = D(t'/?) =t (1 + log™ t)=.

O

Proof of Theorem 3.8. The argument follows the scheme of the proof Theorem 3.1,
which corresponds to the case £ = 0, and we only give the main changes. We proceed
by induction to obtain (a). The proof of (b) follows as in Theorem 3.1 from (a.2) by
a suitable choice of A and B (see Remark 5.1).

We assume that the cases m = 0,1,...,k — 1 are proved and we show the desired
estimate for 7). Thus, we fix a weight © € L and 0 < f € L. By homogeneity we
can also assume that ||b]|pmo = 1.

We recall some properties of BMO to be used later. Given b € BMO, a cube @,
j >0 and ¢ > 0, by John-Nirenberg’s theorem we have

10 = 00) 20,0 < 10 =00V Nl = 10 = ballip o < C IblBvo- (5.9)
On the other hand, for every [ > 1 and b € BMO, we have

l l
b — baig] <D bam-1g —bamgl <27 ) [Ib—bargllzr2m g < 2" 1||bllzmo. (5.10)

m=1 m=1
We perform the Calderén-Zygmund decomposition of f at level . Let g, h = > i s
Qj, Qj, Q) and @ be as in the proof of Theorem 3.1. Then,

w{z € R™ : |TFf(z)] > A} < w(Q) + u{z € R"\ Q: [TFh(z)] > \/2}
+uf{z e R"\ Q: [TFg(z)] > A/2}
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= [+ 1II+1III,

and we estimate each term separately. For I we obtain the first estimate in (5.2)
exactly as before. Then,

NA f( ) M (x)d:vS/nck (&;)’) Mu(z) dz

and we observe that Mu is pointwise controlled by either Mzu, Mp,u or My, 1 1ys+<u-
So the desired estimate follows in each of the cases.

Next, we estimate I by using the induction hypothesis and the conditions assumed
on the kernel. As in [33] we can write

=D _Tihy(x) ZCkab (> —bo)h;) @)
+Z x) —bg,)* Thj(z) = Fi(x) + Fy(z), (5.11)

and we estimate each function in turn.

For F; we would like to use the induction hypothesis. We start with (_ a.l
0<m<k—1then Hyp C Hy,, and so K € Hg N H . Also, as Cp(t) < Cpn(
have

). 1
t) we

AT HB(C, () <A ()BT, () <t
Thus the hypotheses on (a) are satisfied for every 0 < m < k — 1 and therefore

w{z € R\ Q: |Fi(z)] > A4} < kz_iu{x : ‘T;”(Z(b - ij)k—mhj)(x)‘ > )\/(J}

m= J

5,0 = bo,) )
S / Crm Mgt dze

m=0 R™ )\

k—1 _

b—bo. [F-™|h;
m=0 j J
k—1 _
. _ b — bg,|* m|hj\)

< f My Cn : dz,
~ mozj: essQljn Au /j ( )\ X

where in the last estimate we have used (5.7). Let us observe that C, '(¢) E,:_lm(t) <
C.1(t). Then, Young’s inequality implies

+/ Crm(c|b—bg,[*™) dx

b—bo.|*™|h; '
[ e (Bt gy [ g (1Y 4
j A Qj cA j
— M clb=bq;l .. < M .
= [ Cy )\ de+ | e itde < [ Cy 3\ dz + |Q;| (5.12)

J J J

as [|bllsmo = 1 implies, by John-Nirenberg’s theorem, that ||b — b, |lexpr.q, < c
Besides, using that Ci(t)°, 0 < § < 1, is concave and so subadditive it follows that Cj
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is quasi-subadditive —that is, Cy(t1 + t2) < Ci(t1) + Cr(t2)—. Therefore, by Jensen’s
inequality for C

h; _
/jck <%) de/QjCk (§> dz + |Q;| Cy (f§7> SQ/jCk <§> dx.
1 f)
i<~ de < [ Cp| %) da.
i<y [ sars [ a(5) o

J

Also, (5.1) implies

Plugging these estimates into (5.12) we obtain

w{z e R"\ Q: |Fy(z)| >)\/4}<ZZessmf Mt /Q.C;€ (§> dx

m=0 j

52/’@ ({) MAadxg/an ({) Mu dz.

This gives the desired estimate for F} in case (a.1). Notice that the same computations
hold in case (a.2) replacing everywhere My by Mp, .
Next, we estimate Fj:

Wz € R\ O : [Fy(2)] > A4} < = Z/n £) — b, |* [Thy (@) | u(z) dx

<33 M=ol [ e =) = K =0 )
<5 Z/ W)l [ (@ —y) = K(z —2q,)| [b(z) — bo,|" u(=) dz dy.
j Qj Rn\Qj
We claim that for every cube ) (whose center is zg) and for every y € () we have
/ |K(z —y) — K(x — 20)| |b(x) — bo|* u(z) dv < ess inf Myu. (5.13)
R"\2Q Q@
This estimate applied to each @); implies

n\ O 1 .
Wz € R\ Q: [Fy(x)] > A4} < XZeSSQljnf MAU/_ Ihs ()| dy

N)\ZessmeAu/f dy<>\z y) Mzu(y) dy

Rnf(y)MAU(y)dyS/n (‘f&N) Mzu(y) dy.

Note that this leads to the desired estimate in (a.1) and also in (a.2) (we observed in
Remark 3.3 that Mzu < Mp,u). Collecting the obtained inequalities for F; and F,
we complete the estimate of I1.
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We show (5.13). Let @ be a cube with center z and sidelength 2. Using (5.10);
the generalized Holder’s inequality for A and A, and also for A, B and Ci; and (5.9)

/ K(z - y) — Kz — 20)| |b(x) — bo|* u(x) da
R7\2Q
<y / K(z —y) — K(z — 20)| |b(z) — by ol u(z) da

+Zl’“/ Kz —y) — K(x — 20)| u(z) d

|z—zg|~2tr

o0
SO @)K = y) = K(- = 2Q)|IBja—sg, oot 10 = bats10)*llg, a1 g 1ullg201

+ Z QZ lk”K ) - K( - xQ)l|A,|:chzQ|~2lr HuHﬁ,QHlQ

< ess me Mzu,

where we have used that K € Hg N H 4.

To complete the proof we need to estimate I1I. The proof is almost identical to
that of Theorem 3.1. For the case (a.1), in (5.4) we apply Theorem 3.7 in place of
Theorem 2.4. Once we have that estimate, the proof follows the same computations
once we check that |T}Fg|P M,u € L*(R™) (we show this below). For the case (a.2) we
need to show that T} satisfies the corresponding estimate in (5.8). But this follows
from Theorem 2.6 as we can apply Theorem 3.7 to the adjoint of T} —mnote that
(T}F)* = (T*)*, and T* is a singular integral operator with kernel K (z) = K(—z) €
Hg M Hyp—.

As just mentioned we only need to check that |T}Fg|P M,a € L*(R™). As u € L™
it suffices to see that TFg € LP(R™) for p large enough. This is trivial if one assumes
that b € L*™ as our assumption on K implies that K € H; and thus 7" is bounded on
LP(R™) for every 1 < p < oc:

k
ITE gl = | 3 Cosbt T | 1y S IB1E= gllzvcer

< [[bllfoe AP f[ gy < 00,

Thus, we obtain (3.6) with Su = Mu under the additional assumption that b € L.
We pass to an arbitrary b € BMO: for any N > 0 we define by(z) = b(x) if —N <
b(x) < N, by(xz) = N if b(z) > N and by(z) = —N if b(z) < —N. It is not hard to
prove that |by(x) — by (y)| < |b(z) — b(y)| and hence ||by||pmo < 2|b||pmo. Therefore,
as by € L™ we can use (3.6) with by in place of b and so

A
v T
<C /n Cr (M) Mzu(z) dx (5.14)
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where C' does not depend on N. Since f € L it follows that for 0 < m < k&,
(by)™ f — 0™ f as N — oo in L? for ¢ > 1. The fact that 7" is bounded on L4
implies T'((by)™ f) — T(b™ f) as N — oo in L9. Passing to a subsequence the
convergence is almost everywhere and so using that

T, £ ZkabN )by f) (=)

it follows that Tf f(x) — T} f(z) for a.e. z € R" as j — oo. Then, we clearly have
that X{Técf>/\}(x) < liminfj oo X7 sy (@) a.e. Thus, Fatou’s lemma and (5.14)
N

J
drive us to the desired estimate for 7*. This completes the proof of (a).

To obtain (b), we proceed as in Remark 5.1. Given € > 0 we pick p > 1 and 6 > 0
sothat (k+1)p—14+26 =k+e. Let A(t) = exp(tm) —1 and B(t) = exp(t?/?) —1.
Note that we have A (t)B-1(t)C, (t) < t. Also, Hy C Hyz and H o, C Hap
(as A(t) < e"* —1 for t > 1). Then K € HgN Hyy,. We apply (a.2) with D(t) =
tP (1 +logt ¢)(k+DP=1420 and £(t) =~ 7' /(1 + logt )1+ =1) ¢ B, (note that we have
D-L(t)E7L(t) < A '(t)). Then we obtain the desired estimate for the pair of weights
(u, Mp,u). To conclude we observe that D,(t) = D(t'/7) =t (1 + log* t)k*=. O

Remark 5.2. The proof for the multilinear commutators follows the same scheme,
we just give some of the changes, leaving details to the reader.
To estimate 1 we use ideas from [36] and replace (5.11) by

L)) £ 3 1Ty, (o7 B = X by ) @) + 3 s,y (6= )| [T (o)

01,02 J J

= Fi(x) + Fy(z),

where the first sum runs over all partitions oy, oy of {1, ..., k} with o1 # ©; T~ is the

multilinear commutator associated with the vector by, = (b, )15 Ty (V) = Hz Vg, (1)
and 7y, gy (V) = Hle vy; and N = ((bl)Qj, . (bk)Qj). With this in hand we estimate
F using the induction hypothesis as #05 < k — 1, and we estimate F, using that
K € Hpy (see [23]).

The estimate for 117 is obtained by using [23, Theorem 7.1] and observing that
(T3)* = (T*)_; and T* is a singular integral operator with kernel K (r) = K(—x) €
HB,k-

6. PROOFS IN THE ONE-SIDED CASE

Proof of Theorem 3.12, Part (i). The proof follows the same pattern as the proof in
Theorem 3.1. We will only highlight some of the details. Again, we can assume that
u is bounded and has compact support, also 0 < f € L¥(R). Let

QO={reR: M"f(z) > \} = UI—UaJ,)
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where I; = (a;,b;) are the connected component of 2 and they satisfy (see[30])

ﬁ/j_f(y)dyzk

Note that if x ¢ €2, then for all A > 0
1 x+h
3 A OTTESY

Therefore f(z) < X for a.e 2 € R\ Q. Let fj_ = (¢j,a;) with ¢; chosen so that

|fj_| = 2|I;| and set
Q=Ja;ur) =1
J J
We write @ = u Xp\q and decompose f as f = g + h, where

9=fXpat D I Xy h= Zh—Zf 1) X, -
j=1 j=1

Observe that 0 < g(x) < X for a.e.x and also that h; has vanishing integral. Then
w{z € R:|THf(z)| > A} <u(Q) +uf{z e R\ Q: [TTh(z)| > A/2}
+uf{r € R\ Q: |THg(x) > N/2}
=1+4+I11+1I1I.

Now we proceed in the same way as in the proof of Theorem 3.1. We estimate I:

I=u(@) = u(U;L) < 3 (ully) +u(ly)).

/|f o< 2 /|f )| M- u(z) do

> N)\/|f )| M~ u(z) dr < ~ /yf )| M~ u(x) dx

J

On the other hand, using that M™ is of weak-type (1,1) with respect to the pair of
weights (u, M~u) € Al (see [27]),

Zu(_fj) =u(Q) < %/Rf(a:) M~ u(z) dx

J

For each 5 we have

J
1|

Il =~

u(l;) =

and then

and therefore c
I< —/f(x) M~ u(zx) dx.
A Jr

Observe that, as before, M~ u is controlled by M- u in (a), by Mp u in (b) and by

M[j(log L)Eu in (C) .
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We turn to 1. Let r; = |I;| = |f]_\/2 We use that h; is supported in I; and has
vanishing integral, also that K is supported in (—o0,0):

<= Z/ ITh;(2)| u(z) dz
< ;Z/ hs() /M Ko —y) — K(z — ay)| u(z) dz dy
=§Z/ sl [ 1K = ) = K= o) ey

Then it suffices to obtain that for every y € I},
/ |K(z—vy) — K(x — aj)u(z)de < esslinf M, u, (6.1)

which readily leads to the desired estimate

1 . _ 1 : _
7 < XZeSSIJmf MAu/. |h;(y)| dy < XZeSSIJl-nf MAu/ij(y)dy
Z/ ) Mu)dy < 5 [ £

We show (6.1). Let y, z € I}, using generalized Hélder’s inequality, for A and A, and
that K € Hy,

cj aj—2 T
/ |K(z —y) — K(x —aj)|u(x d:L‘—Z/ —y) — K(x — a;)| u(x) dx
—00 _2k+1
Z T] HK o y) ( - a])”'Avl‘x*a]‘/\‘Qk T']' Hu X(aj—2k+1 r]-,aj—2k 7‘]-) ”j,|:c—a]-|~2k Tj
<D 2K (= y) = K( = ap)llajoagimaery 1l a,—zie1r, 2y S Mg u(2).

k=1

To estimate 11 we first claim that for any Young function C, any weight v with
My v < oo a.e., and any interval I = (a,b) we have

Mg (v Xpy7-ur) (¥) = esszein Mg (v Xg\7-ur) (%), aey €l (6.2)

where I~ = (¢,a) with ¢ so that [I-| = 2|I|. Assuming the proofs of the three
cases (a), (b) and (c) adapts readily to the one-sided setting. For (a) one uses that
M u € Al C AL and therefore MT is bounded on L9(M 1) for every 1 < q < oc.
For (b) we apply (i) in Theorem 3.11 to the one-sided operator T~ = (T")* (whose
kernel K(z) = K(—z) is supported on (0,00)) and then (i7) of Theorem 3.11 to
conclude (5.8) with My, @ in the right-hand side. In case (c) we only need to adapt
Remark 5.1 to this setting.

To complete the proof of (i) we show (6.2). Fix y,z € I = (a,b) and write I~ =
(¢, a), where we recall that |[I~| = 2 |I]. Observe that if ¢ <t <y then (¢,y) C (c,b) =
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I~ Ul Thus,
Me (v X\ 7-ur) () = sup 10 Xz -ur ety = Sup v Xz 7-ur llety)-
) c

Given t < ¢ and A > 0 it follows

1 v fv(z) XR\IA*LH(‘CE) 1 ¢ (v(z) XR\ffu[(x)
Etc< A )dm_ﬁ/tc< A )dm

_z—t 1 /CC (U(x) XR\TU[(@) d$§§ 1 /ZC<U(9U) XR\fuI(x)> dx
y—tz—tJ, A 2z—1J, A

and therefore [|v Xp\7- lle,ty) < 3/2|[v Xgy7-ur lle,¢,2) Which in turns gives the de-
sired estimate.

O

Using the previous ideas the proof of part (i) in Theorem 3.12 can be obtained by
adapting the proof of Theorem 3.8. Further details are left to reader.

Proof of Theorem 3.14. By homogeneity it suffices to consider the case A = 1. Let
1 <p<ooandlet Q={x:|Tf(x)]>1}. Then, by duality, there exists G € L¥ (u)
with [|G|| () = 1 such that

w7 = | X vy = / G(x) ulz) de.

Then, using the hypotheses and Holder’s inequality
u(@)? < i [f (@) Mz (G u)(2) de < || fll o) |MF(Gu)ll Lo o1

Our hypotheses guarantee that we can apply Theorem 3.15 (indeed the corresponding
version for M) to obtain that M, maps LP (u'™?") into L¥ (v'~*"). Therefore,

w(@)Y? S 1z 1G ull o vy = 1 o) 1G oy = 1 fll2oey.
U

Remark 6.1. As observed before, this proof can be easily adapted to yield Theorem
3.5: one only needs to see that (3.3) guarantee that Mz is bounded from L (u'~?")
into L¥' (v'?") (see [12]). For further results and a deep treatment of extrapolation
results of this kind the reader is referred to [11].

Proof of Theorem 3.15. We use ideas from [38].

First we observe that it suffices to assume that u is bounded and compactly sup-
ported (otherwise we work with ugp = X, <p w@)<ry and take R — o0).

Fix f continuous with compact support and for k € Z we set Qp = {z € R: 2% <
M7 f(z) < 2¥2}. For any = € Qy, there exists ¢, > @ such that 28 < || f|| 4 (z,c.) < 2872
Using the continuity of the integral it is easy to show that there exists d, € (z, ¢,) (that
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can be taken sufficiently close to z verifying d, < (¢, + x)/2) such that [z,d,) C Q4
and 28 < || f||4,(5,.c.) < 2572, We write I, = [z,0,) and I, = (d,, ¢,) and therefore

Q= |J I, and 2'< 11l azz, < k2, (6.3)

acGQk

As in [5] (see also [38, Lemma 2]) there exists a finite subcollection of pairwise disjoint

intervals {I; }je; such that
u() <33 u(l;)
jeJ
This and (6.3) yield

/Mj{f dx<2/ (MG f)Pude 25 u() S 27> u(l;)

keZ keZ keZ jeJ
<ZZHfHAI+ u(l) =Y Y lfotre 1”’I!Aﬁ u(l;y)
keZ jeJ keZ jeJ
<S> val/”HZJ;k HU*WHZ% !, o | ikl
kEZ jeJ ' '
Note that
||fU1/p||c,1].+,k <2 ||f”1/p|’c,1;ku1;jk < 2Mc(f Ul/p)(l‘)a T € L.
This, (3.7), and the fact that the intervals I ;1 are pairwise disjoint and contain in {2
imply
[ sy ut e S Y I 1 <ZZ/ Me(f 0'/7) ) d
R kcZ jeJ kcZ jeJ
<>/ M)y <2 /MC (F 0P (2)? da
kEZ,

§2/|f(x)|pvx dx
R

where in the last estimate we have used that C € B, and consequently M is bounded
on LP(R) (see [34]). This completes the proof. O
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