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WEIGHTED INEQUALITIES FOR INTEGRAL OPERATORS
WITH SOME HOMOGENEOUS KERNELS
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Abstract. In this paper we study integral operators of the form
T = [l =™ e = a0 dy,

a1 + ...+ am = n. We obtain the LP (w) boundedness for them, and a weighted (1,1) in-
equality for weights w in A, satisfying that there exists ¢ > 1 such that w(a;z) < cw(z)
for a.e. z € R", 1 < i < m. Moreover, we prove | Tf|lmo < ¢||f]loo for a wide family of
functions f € L°°(R"™).
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1. INTRODUCTION
In [7] the authors study the boundedness on L?(R) of the operator
Tf(a) = [ o= sl =2l + 3l fw) d

O0<a<l
In [3] the authors study integral operators of the form

Tf) = [ o=yl a0 ) do

0 < @ < n. They obtain the LP(R",dx) boundedness and the weak type (1,1) of
them.

Partially supported by CONICET, Agencia Cérdoba Ciencia and SECYT-UNC.

423



In this paper we consider integral operators defined for f belonging to the Schwartz
class S(R™) by

(11) Tfa) = [ Jr— g™ o= eyl ) d,

a1+ ...+ap=n,a;>0and a; e R—{0} fori=1,...,m
We take the Hardy-Littlewood maximal function as

1
M) = sup /Q (@) da

where the supremum is taken along all cubes @ such that x belongs to Q. We recall
that a weight w is a measurable, non negative and locally integrable function. It is
well known that, for p > 1, M is bounded on LP(w) if and only if there exists ¢ > 0
such that

el )

The class of functions that satisfy (1.2) is denoted by A,. For p = 1, the class 4; is
defined by
Mw(z) < cw(z)

for a.e. x € R™ and for some positive constant ¢. The weak type (1,1) of the maximal
function is equivalent to w € A;. These classes A, have been defined by Mucken-
houpt (see [6]) in the one dimensional case and for higher dimensions by Coifmann
and Fefferman (see [1]).

In this paper we obtain the boundedness of 7" on LP(R", w) and a weighted (1,1)
inequality for a wide class of weights w in A,. We prove the following result:

Theorem 1. Let T be defined by (1.1). Suppose there exists ¢ > 1 such that
w(a;xz) < cw(x) for 1 <4 < m and for almost every x € R™.

a) Ifwe A,, 1 <p< oo, then T is bounded on LP(R", w).

b) If w € Ay then there exists k > 0 such that, for A > 0 and f € S(R"),

w({z: [T@)] > A}) < / @)z

We also analyze the boundedness of the operator T from L°° into BMO, the
classical space consisting of functions with bounded mean oscillation, defined by
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John and Nirenberg in [5]. Precisely, we say that f € L{ _ belongs to BMO if there
exist ¢ > 0 such that

- o<

for all cubes @ C R™. The smallest bound ¢ for which the above inequality holds is
called || f||«. From the techniques used, the following result follows inmediately:

Theorem 2. Let T be defined by (1.1). Then there exists ¢ > 0 such that

1Tl < ell flloo

for all f € S(R™).

If f is a positive constant then T f(x) = oo for all x € R™, so we cannot expect a
general boundedness from L*° into BMO. With techniques similar to those developed

in [8], we obtain

Theorem 3. Let T be defined by (1.1).
a) If f € L* and T|f|(zo) < oo for some x¢ € R™ then T f(x) is well defined for
allz #0and Tf € L] (R").

loc

b) There exists ¢ > 0 such that

ITfll« < el flloo

for all f as in a).

By ¢ we denote a positive constant, not the same at each occurrence.

PROOF OF THE MAIN RESULTS

We follow the argument developed in [2, p. 144] where the case of the Calderén-
Zygmund operators is treated. As there we define, for f € Li _(R"), the sharp

loc

maximal function by

M) = sup ﬁ /Q f — fal(y) dy

with fo = [Q|™ fQ -

We denote D = max |a; | and d = min |a;'|. We need the following result:
1<i<m 1<i<m
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Lemma 1.3. If T is defined by (1.1) and s > 1 then there exists ¢ > 0 such that
for all f € S(R™),

M#(Tf) () < (M f*(ay @) + o+ (M (ay, @) ).

Proof. We first observe that T is a bounded operator on L?(R™,dz), 1 < p < oo
(see [4]), so for f € S(R"), Tf € LL (R") and M#(Tf)(x) is well defined for all

loc

x € R™. We take x € R™ such that T'|f|(x) < oo and @Q a cube that contains z. We
set 1(Q) as the length of the side of @, denote by @ the cube with the same center
as @, such that [(Q) > 2D/d - 1(Q) and, for 1 < i < m, we also set Q, = afla. We
decompose f = f1 + fo, f1 = fXUlgkgnLak and take a = T fa(x). Then

1 1 .
@/Q|Tf(y)—a|dy< @/QITfl(y)Ider@/meg(y)_TfQ(x”dy_

If s > 1 then T is bounded on L*(R™,dz) (see [4]), so

1 1 . 1/s
el /Q T 1) dy < (@ /Q Th) dy)

<C<(ﬁ /51 |f(y)|5dy)1/s+...+ (I%I /Gm If(y)lsdy)l/s>

<[P (a5 o) + .+ (M () 2) 7).

On the other hand,

ﬁ/Quﬂfz(y)TfZ(‘"””dyg IUII/Q'/(

where we denote by K (z,y) the kernel |z — a1y|~* ... |z — apy| ™.
We now estimate |K (y, z) — K(z, 2)|.

Case 1(Q) > 2|z|. In this situation |J @, D {y: |y| < 3D|z|}. Indeed, if
1<k<m

z € (Ulgkgm @k) , then |z| > |z — a7 'a| — oy 2| > 1(Qy) — Dl|z| > dI(Q) — D|z| >

3D|z|. Moreover, in this case |z — a1z| < |#] + |a1z| < (Ja1] + 555) 2| then

dy

_ (K(y,2) = K(,2)) f(2)dz
Qk)

Uickgm

1

14 —a;z| = |a;z| — >(i——)
(1.4) @ = az] > laiz| — |2] > {lai] = 57 )I]
>(3|ai|D71)1| |

> (——) =]z —a12|.

3lay|D+1/2 !
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__\C
Thus we apply the mean value theorem to obtain, for z,y € Q and z € ( U Qk) ,

yQ:wcmeHm—mwz
for some € between  and y. But |a; '€ —2| > |a; 'z —2|—|a; '€ —a; ‘2| > $|a; ‘v — 2],
so (1.4) implies

|z —y|
|z — ay 2|t

(1.5) [K(y,2) — K(z,2)| < ¢

Thus

IQI/V K(y,z) = K(z,2))f(2)dz

U1<k<m

dy

lz -yl

———|f(2)| dzdy
|Q| /Qk 1/2’€Dl(Q)<|a1 z—z|<2+1DI(Q) |a] 1$—z|"+1| (2)]

< d(Q) ; Qle( ) (Qle Q)" /lallzz<2k+1Dz(Q) |f(z)|dz
<M f(ay'm) < o(Mfo (a7 ) e.

Case 1(Q) < 2|x|. We decompose

Jo K -K@a@e= [ L
(Ulgkgm Qk) |z|23D|z| {\z\<3D|z|}n(U1<kSm Qk)

To estimate the first integral, we proceed as before and we obtain (1.5) for z,y € Q
and |z| > 3D|z|, then

ﬁ /Q’/|Z|>3DI(K(% R

We now study the second integral. For 1 < i < m, xz,y € Q and z € {z: |z|] <

3D|x|}ﬁ( U @k)c,wehave

1<km

dy < e(M f*(ay @)/,

liL'*Z|

2 )

1 la;

la; 'y — 2| = |a; e — 2| — |aj 'y — a7 2] >

hence
|K(y,2) — K(z,2)| < c|K(z,2)].
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So

/ - (K(y,2) — K(x,2))f(2)dz
{121<3D12} (U e @r)

<C/ £ (2)] &
(21 |2]<3D|a]} [T — 12| .|z — apmz|om
Wedeﬁneb:% (|a —a; ). Weset A; = {z: |a; 'z —2| < blz[}, 1 <i <m,

and A1 = (U and decompose

o
/ 1) o

{2 |2|<3D|zl} |z —arz|®r .. |z — apz|om

= / +... .+ / +/ .
Ar Am Amt1n{z: |2]<3D|x|}

For z € A; and | # i we have |a; 'z — z| > b|z|, hence

[ ) "
A, T —arz|r e — apz|om

< e,
X n—o ) - V — —
= Ly Jamitblel<a; te—zl<2bla) @ @ — 2]

1
< S oiteimm__ 1
CZ (2-7bf])"

Jj=1

N S AT < M T )

Now

/ )] dz < c|:z:|_"/ 1£(2)]dz
Api1n{z: |2|<3Dla|} 1T — @12]®0 . |2 — apmz|om {z: |2|<3D|z|}

< eMf(agtz) < e(Mf5(ay a))'/?,

and the lemma follows. ]
Lemma 1.6. Let T be defined by (1.1), 1 < p < 00, w € A, and f € LP(w).
Then Tf € LP(w).

Proof. Ifsuppf C B(0,R) and |x| > 2R then |K(z,y)| < ¢/|z|™ and so in this
case |Tf(z)| < cr/|z|™. The proof follows as in Theorem 7.18 in [2], since T is a
bounded operator on LP(R"™, dx) (see [4]). O
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Proof of Theorem 1. a) Taking account of Lemmas 1.3 and 1.6, we proceed as
in the proof of Theorem 7.18 in [2] to obtain, for f € S(R™),

[1rs@Pro i
<o 107 @ ) o (0 0) o) de
c/ |M f5(z) [P *w(ayz) de + . .. + / |M f5(x)|P/* w(amz) da
< c/ |M f5(z) [P/ *w(z) da.
The last inequality follows from the hypothesis about the weight w. The rest of the
proof is as in Theorem 7.18 in [2].

b) For A > 0 we perform the Calderén-Zygmund decomposition for f to obtain a
sequence of disjoint {Q;};en such that f(z) < X for almost every z ¢ |J Q;. We

take <
f(x) if x ¢ _UN Qj,
g(z) = 1 ” J€

and write f = g+ b.
As usual, from a), we obtain

wiz: |Tg(z)] > A} < /|f Yuw(a

For each ¢ = 1,...,m and 5 € N we denote by Q_J the cube with the same center
as Q; and such that 1(Q;) > 2D/d - 1(Q;), and Q;; = a;Q;. We obtain

o(Jn) < Su@n <cy gﬂ")m

JEN jeN JEN
w(Qji w(Qj,i
SeQ Qe < <Y 5 o
JEN | It JEN | Jst
<3 Z/ )| Mw(aiy) dy
JeN

s [ <5 [ @l a

Then
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Now for each fixed i = 1,...,m, if ¢; denotes the center of ();, we have

w({x: I Tb(x)| > A} N (U @))

jeN

X < b_] K Z, —K Z, Cj dy|w(x) dx
X < b] K Z, - K Z,Cj5)|w T dx dl/

Now we observe that K (z,y) = cK(y,z) where K(z,y) = |& — a7ly|~®" ... |z —

aly|~*m. Reasoning as in a) with K instead of K and using the hypothesis on w,

we get
| K(x,y) = K(x,¢5)|w(z) de < eMw(aiy) < cw(y).
(Qj,i)°
So
w({m: |Th(z)] > A} N ( U QN) )
JEN,i=1,...,m
c c
<5 [ b < s [Irwl)
O
Proof of Theorem 2. It follows straightforward from Lemma 1.3. O

Proof of Theorem 3. a)Let f € L°°(R") and let 2o be such that T'| f|(x¢) < oo.
We take R = 4D|xgl|, denote B = B(0, R) = {x € R™: |z| < R}, define f1 = |f|xB
and decompose |f| = f1 + f2. Then

Tfl(-r) < / |$ — a1y|—a1 . |$ _ amy|—amf(y) dy
B
Wl [ o= gl o = any] o
B

If © # 0 we choose r > 0 such that r =
define B; = B(a; *x,r). We have

min '—a;!||z|. For 1 <i<m, we

in Ja;
1<i, k<m

1
4 [

/ |z —a1y| ™ ..z — amy| Y™ dy
B

< ) / |z —awy|™™ ...z — amy|" " dy
B;

1<i<m

- /Bm(u

x—ay]" . — apy|” Y dy.

c
1<i<m Bl)

430



/ |z — a1y~ ... |z — apy| ™ dy

H / |z — a;y| "% dy < H QkpTaitn —

k#i k#i

If |a; 'z| < 2R for some 1 < i < m, then, for y € BN(B;)°, we have r < |a; 'z —y| <
3R and so

/B” (Urcicm Bi)

Sc||r / |z —ay| " dy
]‘_‘[ BN(B;)* ’

Lo = amyl T dy

ki
cHr @k / gmetn=lqp
k#1
= cHr WR[(BR)X T — 7t = ¢ (|x|2k¢i Tk 4 1) ,
k#i

so for z # 0 and such that |a; 'x| < 2R we obtain
(L.7) TA@)] < ellflloo (1+ aZre 00
Now if |a; ‘x| = 2R for all 1 <4 < m, then |a; 'z —y| > R for y € B(0, R) and so

T fr(@)] < [[f]oo-

So (1.7) holds for all z # 0. Then T fi(x) < oo for all  # 0 and it belongs to

loc(Rn)
Now T f2(z9) < oo so we write, for z € R™, T fa(x) = T fa(z) — T fo(xo) + T f2(x0).
Then we have to study

[ K@) = Ko )l 1) dy
For z # 0 we have
[ K - Keopliiwdvs [ ) - Kl b
o oany K@Dy e

431



To estimate the first integral, we proceed as in the proof of Lemma 1.3 to obtain
that, for y € B°N B(0,4D|z|)¢,

|z — xol
K (z,y) — K(zo,y)| < CW7

SO

/1(y)

K (x,y) — K(zo, )| [fI(y)dy < clw —xo| | ———r
/BCHB(OADw)C pe |7 —ary[" Tt

< el — o[ floo-

To study the second integral, we observe that it appears only if D|x| > R/4, so we
proceed as in the previous estimate for T f; to obtain that, for = in this region,

/ 1K (2, )| 1£1(9) dy < el .
BenB(0,4D|x|)

So, for @ # 0, T'f2(z) < oo and it belongs to L{ (R™).

loc

b) If f satisfies the hypothesis of a) we obtain that M# (T f)(z) is well defined for
all x € R", so Lemma 1.3 still holds for these functions, and b) follows. O
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