ON THE BEST RANGES FOR A} AND RH,

M. S. RIVEROS AND A. DE LA TORRE

ABSTRACT. In this paper we study the relationship between one-sided reverse Holder
classes RH;" and the A;l' classes. We find the best possible range of RH;" to which
an Ai" weight belongs, in terms of the AT constant. Conversely we also find the best
range of A;{ to which a RHI, weight belongs, in terms of the RHJ, constant. Similar
problems for A;‘ ,1<p<ooand RH, 1 <7 < oo are solved using factorization.

1. INTRODUCTION

It is well known that there is a relationship between the A, classes and the so
called reverse Holder classes RH,. C. J. Neugebauer [8] has studied the following
problems:

(1) For w € A,, find the precise range of r’'s such that w € RH,, the precise
range of ¢ < p for which w € A, and the precise range of s > 1 so that
w® € A,p.

(2) Conversely, for a fixed w € RH,, find the precise range of p’s such that
w € A,, and the precise range of ¢ > r for which w € RH,.

For the one-sided Hardy-Littlewood maximal operator,

the A]‘f classes were introduced by E. Sawyer [9]. He proved that M is bounded
in LP(w) ( p > 1) if, and only if, the weight satisfies A} i.e., there exists a constant
C such that for any three points a < b < ¢

(o) s

The smallest constant for which this is satisfied will be called the Al‘f constant of
w and will be denoted by A;;(w). For p = 1 the weak type of the operator holds

if, and only if, the weight w satisfies A i.e. there exists C so that for any a and
almost every b > a,

/bw < C(b—a)w(b).
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The smallest such constant will be called the Af constant of w and will be denoted
by Al (w). For later reference we point out that it is an easy consequence of
Lebesgue’s differentiation theorem that the constant in the definiton of A} is always
greater than, or equal to, one.

These classes are of interest, not only because they control the boundedness of
the one-sided Hardy-Littlewood maximal operator, but they are the right classes
for the weighted estimates for one-sided singular integrals [1] and they also appear
in PDE [4]. In contrast to the Muckenhoupt weights, the one-sided weights are not
doubling, but they satisfy a one-sided doubling property, namely if w € A; then

there exists C' such that for any a € R and h > 0, faa+2hw < C’f;j}fh w. The
reverse Holder property is not satisfied by these weights either but nevertheless
Martin-Reyes [5] proved that there is a weak substitute of this notion, that we will
denote by RH,", which is good enough to prove the “p — €’ property. In [7] the
class AT, was introduced and it was proved that AL = Upcoo A} = Ui, RH,'.

In this note we solve the problems of the Neugebauer paper in this context. In the
proofs we will make essential use of the one-sided minimal operator introduced by
Cruz-Uribe, Neugebauer and Olesen [3]. It is defined as m™ f(z) = inf.~, ﬁ f; ||
We will also use the fact that for any positive function g, the maximal operator
Mg f(z) = sup,e; ﬁ J7 |flgdz is of weak type one-one with respect to the measure
gdx. Note that for g = 1, we have the classical Hardy-Littlewood maximal operator,
which is denoted by M f.

The paper is organized as follows: in section 2 we give definitions and charac-
terizations of RHT, 1 < r < oo. In section 3 we prove two theorems of best range
for the extreme classes A and RHZ . In section 4 we give a factorization theorem
for weights in RH ", and finally in section 5 we extend the theorems of section 3
for AY and RH,', using the factorization proven in section 4. We shall see, that
the index range depends on the factorization of the weight.

We end this introduction with some notation: for a given interval I = (a,a + h)
we denote by I~ the interval (a — h, a), I'" the interval (a + h,a+2h), and I™T the
interval (a4 2h,a+3h). For any 1 < p < oo, p’ will be its conjungate exponent, if g
is locally integrable and E is a measurable set, g(E) will stand for [, g and C will
represent a constant that may change from time to time. Finally we remark that
we can change the orientation on the real line obtaining similar results for classes
RH;,A5,1<r§ooand1§p§oo.

2. DEFINITION, CHARATERIZATION OF RHf FOR 1 < r < o0

We start this section with the definiton of RH,;", 1 < r < oo.

Definition 2.1. A weight w satisfies the one-sided reverse Holder RH," condition,
if there exists C' such that for any a < b

b b
(2.2) / w” < C (M(wy(a)®)" " / w.

The smallest such constant will be called the RH," constant of w and will be
denoted by RH," (w).
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Definition 2.3. A weight satisfies the one-sided reverse Holder RH} contition, if
there exists C' such that

(2.4) w(z) < CmTw(zx),
for almost all z € R.

The smallest such constant will be called the RHL constant of w and will be
denoted by RHY (w). It is clear that C' > 1.

The following lemma gives several characterizations of RH;. The constants are
not necessarily the same.

Lemma 2.5. Leta<b<c<d,1<r <oo, and w > 0 locally integrable, then
the following staments are equivalent

b b
) [ <t ®) [

b AN
i) ﬁ/wTSC(ﬁ/w) , with b —a =2(c— D).
a b

b d
iii) ﬁ/ wrg(J(diC/ w> , withb—a=d—b=2(d—c).

b c r
i) bia/wrg(}’(%b/w) , with b —a =c—b.
a b
b d T
v) ﬁ/wrﬁc(dic/ w) ,withb—a:d—czy(d—a),0<7§%_

Proof. To see i) = i), we fix a < b < ¢, b—a = 2(c—b) and take any = € (b, ¢).
Then

o

C

/ab ws /j w" < C (M(wxam)(@) /ax w=C (M(wX(a,c))(w))r_l/ w.

Therefore (b,c) C {x : (M(wx(a,c))(a:))r_l > ﬁ f; w”}. The weak type (1,1)
of the Hardy-Littlewood maximal operator yieldsj

(c—b) (war):l gc(/:w)ril,
bia/:wrgc<cib/acw>rSc(cib/bcw>r’

the last inequality follows from the fact, proved in [7], that a weight satisfying i)
satisfies A; for some p and thus it satisfies the one-sided doubling condition.

We will prove now that ii) = i). Let us fix a < b and define a sequence (xj) as
follows: xg = a and b—xp = 2(b—x41). In particular 541 —xk = 2(Tpr2—Tk1) =
(b — xk41). Using condition ii) for the points xy, k11, k12, we have

b o0 Tht1 0 T42 "
/ w" = Z/ w" < CZ(C%H — )t / w
a 0 Tl 0 x

k41

<cy | " <ﬁ / b w>m < (o ®) ' C [ .

which implies

k41
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To see ii) = iii) let a < b < c< dwithb—a=d—b=2(d— ¢). Using that w
satisfies the one-sided doubling condition, we have

1t N d—c 1 [\
r< <
b—a/aw_c(c—b/bw> _C<c—bd—c/bw>

iii) = iv) is immediate.

First of all we observe that iv) easily implies that the weight w satisfies the one-
sided doubling condition. To see that iv) = v),let 0 <y <1 anda <b<c <d,
b—a=d—c=~y(d—a) then if z is the mid point between a and d we have

1 /b 11 /x .o 1 /d '
w < — w < — w | o,
b—a /, 2yx—a J, 2y \d—=z J,

but it follows from the one-sided doubling condition that fxd w<C, fcd w.
Suppose v) holds, let a < b < ¢, b—a =c—b=h, we define for k =0,1,..., N
rr = a+ ksh and yr = b+ ksh where s = ﬁ and N is the first integer such that
(N 4+ 1)s > 1. We observe that the choice of x, yx has been made so that for any
0<k<(N-—1)wehave 241 — T = Yptr1 — Y = Y(Yr+1 — Tr). Applying v),
using that r > 1 and the fact that the intervals (yx, yr+1) are disjoint, we have

N—-1

b Tr+1 b
/ w' < E / w"” +/ w”
a k=0 Y Tk b—sh

N—-1

< Clsh)'" ( /y o w)T +C(sh) T < / ;h w)r

k=0 k

< C(c—a) (/bw>

So we have proved that v) = iv).
Finally we will show that iv) = ii). Let a < b < ¢ with b—a =2(c¢—b). Let
be the mid point between a, b, using the one-sided doubling property we have

et ([ )
:%<x—a/ e x/bw>

(e a0

§(< “’) +( 500))

IN
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Remark. The equivalence of i) and iv) was first proved in [3].

The following lemma tells us that in the definiton of A; we can take two intervals
that are not contiguous. Note that in the case of RH,” we have seen this in the
previous lemma.

Lemma 2.6. A weight w € A;, p > 1 if, and only if, there exists 0 < v < % and
a constant C., such that for any a <b<c<d,b—a=d—c=~y(d—a) then

p—1

(2.7) /abw (/del"’) < Cy(b—a)’

Proof. IwaA;,',0<7§%anda<b<c<d,b—a:d—c:v(d—a)then
p—1

/abw </cdw1p/>pl < /acw (/cdwlp/) < C(d—a)’ = Cy(b—a).

To prove that (2.7) implies A} we will show that (2.7) implies that for v and
a,b, c,d as above we have

I I
b_a/wexp E/ —log(w) | < C.

Indeed

1 1
2. — [ -1
28 = [ wewn | = [ ~loztw)
-1
1t 1 A\l
_ —-p
b—a/a [wexp(d_c/c log(w) )]
-1
1 1o\
< 1=p <C.
_b—a/aw<d—c/cw ) s¢

In the same way we prove that w'~P" satisfies

1P R U T
2. | log(w)?'~ - <
(2.9) exp b—a/a og(w) d—c/c w <C

But according to part j) of Theorem 1 in [7], (2.8) is equivalent to saying that
w € AL, while (2.9) means that w'™? € A7 and according to Theorem 2 in [7]

00
these two conditions imply w € A}

0

Remark 2.10. We can easily see that w € A] if, and only if, there exists C' > 0
such that + faafh w < Cw(a + h) for almost every a € R and h > 0.
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3. THE EXTREME CASES: A] AND RHT.

Theorem 3.1. Let w € AIF with AT constant C' > 1, then w € RH for any
1<r< %, and this is the best possible range.

Proof. Let us fix the interval I = (a,b). We consider the truncation of w at height
N defined by wy = min(w, N), which also satisfies A] with constant Cy < C. We
claim that if A\; = M (wnx1)(b), and Ex = {z € I : wy(z) > A} then

(3.2) / WN S CN)\|E)\’ VA Z )\].
Ey
Indeed if E) = I we do not even need the A} condition, since

b
wN(E,\) = / wWN S M(wNXI)(b)(b - (I) = )\](b - a) S ON)\|E)\|

If Ey # I we fix € > 0 and an open set O such that Ey C O C I and |O| < e+ |E},\|.
Let Ji = (¢,d), be one of the connected components of O. There are two cases

(1) a<e<d<b,

(2) a<c<d=hb.
In the first case d ¢ Ey and then wy(d) < A\. Now A] gives fcd wy < Cywy(d)(d—
¢) < CyA(d — ¢). The second case is handled as the case F\ = I, since fcb wy <
M((wnxr)(0)(b—c) < CAb—c¢). In any case wy(Jx) < CnA|Jg|. Adding up we
get

IUN(E)\) < wN(O) < CN)\|O| < CN)\(E + |E)\|>

Since € was arbitrary we are done. Now we proceed in the standard way i.e., we
fix s > —1, multiply both sides of (3.2) by A® and integrate from A; to infinity to

obtain,
1 s+2 1 Cn / 2
_ /\s+ < s+ )
3+1/I(wN I wN)_8+2 [wN
Now if r=s+2< 02{1 then Sil — SC+N2 > 0, and we get

/w?v < CN)G_I/IU)N :CN(M(wNX])(b))T_l/IwN-

Now Cn < C implies Ci]i T > %, and therefore if r < % then

b b

b
v < exonxan)®) " [ ey < Cwxan) ) [ o
and the monotone convergence theorem gives w € RH;'. To see that this is the
best possible range we consider the function

w(z) = 28 Y (0,00) ().

It is clear that does not satisfy RH ', because w%(x) = % for x > 0. To see
-1

that it satisfies A] with constant C, we consider three cases
(1) a<b<0
(2) a<0<b
3) 0<a<b
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In the first case there is nothing to check. In the second case ﬁ f: w < % fob w(z) =
€pe = Cw(b). Finally if 0 < a < b, [Lw=C(b® —a®) < C(b—a)w(b) O
Remark. Note that if C' = 1, then w(x) = M~ w(x), and this implies that w is
non-decreasing. This tells us that w € RHY.

Theorem 3.3. If w satisfies RHY, with constant C > 1, then w € Al for all
p > C, and this is the best possible range.

Proof. A truncation argument as in Theorem 3.1 allows us to suppose that w is
bounded away from zero, i.e. there exists # > 0 so that w(z) > ( for all z. Let
us fix I = (a,b) and consider A\; = m*(w%)(a). We claim that if A < A; and
Ey={x € 1I: w(x) <A}, then

(3.4) MNEA<C [ w.

E,

As before if E\ = I then M\Ey\| = A(b—a) < \;(b— a) fw<w ) If

Ey # I then we aproximate it by an open set O = UJj Where E) cOcCIand
w(0) < e+ w(Ey). Let us fix Jp = (¢,d). There are two cases

(1) a<ec

(2) a=c.

In the first case ¢ ¢ F) and then A\(d—c¢) < w(c)(d—c) < Cmtw(c)(d—c) < Cfcdw.

In the second case A(d —¢) < A\j(d —a) < fjw, and (3.4) follows. If we multiply
both sides of (3.4) by A™" with r > 2 and integrate we have

)\1 o0
/ Al_T/XEA (z) dx d\ < C’/ / x) dx d).
0 0 E\

For the left hand side we obtain,

A1 1
/ AT /XEX () dud\ = o— - / AT —w?T da
Jé] {zel:w(x)<Ar}

1 ) 1 1l
> )\2 T 2—rd — / 2—r /\27’
_2—7°/I I v S Iw r—2"1 7

while the right hand side is equal to & i) / w?~". Therefore

1 2— c 2— ] o
T< T )\ T
r—Z/Iw _r—l/lw +r—2

If we choose 7 > 2 such that C'(r —2) < (r — 1), we obtain that there exists C' so
that

s sl (z)e)”

We now claim that (3.5) implies that w € A with p = 2= Let us fix a <b < ¢

and choose z € (a,b). If we keep in mind that 1 — p’ = 2 — r we may write

c p—1 c p—1 -1
( L w) g( L w) sc<m+< w ><x>) |
c—al, c—x J, X(z,c)
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but

w - LA d—ua X(ac)
+ = i f = :M a.¢ .
() (x;%@d_x / w) S, =M (L) @

c NP1
We have thus proved that if A = (ﬁ J, wt? ) then

(a,b) C {z: CM,, (%) () > A},

and the weak type of M, with respect to the measure wdz yields f:w < Clc—
c N 1P
a)? ( Jy whP ) which is AY. Finally it can be checked that the function w(z)

which is 0 for < —1, identically one for z > 0 and |2|“~! between —1 and 0,
satisfies RHY with constant C, but is not in A5. O

Remark. Note that if C' = 1, then w(z) = m*w(x), and this implies that w is
non-decreasing. This tells us that w € A}

We had several different characterizations of RH,", one involved the maximal
operator, but dealt with one interval, and the others involved two intervals but
no operator. We can now prove that for RHT the situation is the same, we can

characterize RH} using two intervals instead of the minimal operator.

Corollary 3.6. w € RHT, if, and only if, there exists C such that for any interval
I,

1
3.7 esssuprw < C—— w
(3.7) prw < Crr |

Proof. Tt is immediate that (3.7) implies RHY. Assume now that w € RHY . The
preceding theorem tells us that w € A, for some p, and therefore it satisfies the
one-sided doubling condition. Therefore if I = (a,b) is any interval, I™ = (b, ¢) and

x € I we have
C ¢ C ¢
w(zx) < w < w,
c—x J, c—>bJ,

Remark. Note that with this definition, we have that RHY C N,~1RH,".

which is (3.7). O

4. FACTORIZATION OF WEIGHTS IN RH

T

1 <r < .

The theorems on the best range for weights in A;’ (p>1)orin RH', r < oo
will be stated in terms of factorizations of the given weight. Therefore this section
will be devoted to prove a factorization of functions in RH,". The bilateral case

was studied in [2].

Definition 4.1. A function w is said to be essentially increasing if there exists C
so that w(z) < Cw(y) for any = < y.
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Lemma 4.2. A function belongs to RHE N A;r if, and only if, it is essentially
INCTeasing.

Proof. Assume that w € RHE N A7 and z < y then w(z) < C’y%x [Jw < Cw(y)
and w is essentially increasing. Conversely, if w is essentially increasing then for
any z and h > 0 we have w(z) < § ff—h w, then w € RHY. On the other hand
s [0, w< Cw(x) ,sowe Al O

Lemma 4.3. Let1 <r <ooc and 1 <p< cc.

(1) If u is essentially increasing and v € RH," then uwv € RH,.
(2) If u is essentially increasing and v € A} then uv € A},

Proof. This proof follows immediately from Definition 4.1. [

Lemma 4.4. Let 1 <r < oo and1 < p < co. w € RH} ﬂA;{ if, and only if,
w' € A;;, with g =r(p—1) + 1.
Proof. Let Cy = RH,! (w), and Cy = Af (w), w € RHFNAY, and ¢ =r(p—1)+1.

oy q _ rp=1)41 1
Also note that 1 —¢' =1 r=1) = r(i=p)’

1 1 S\ 41
- T - r(1—q’)
<|I—| I-w>(|f+|/z+w )
r r(p—1)
1 1 ,
<Oy (= — 1-p
= 1(HLAUJ (u+mﬁ+w )

S Cloga

and by Lemma 2.6 we have that w” € A].
Ifw" e A;r, by Holder’s inequality

1) )
e w E— w
(m YANTEN
1 1/7" 1 (q—l)/r
< | = r _- —r/(g—1)
—<u|/f“’) (Ilﬂ e )

<ol

obtaining in this way that w € A;r. Now again by Holder’s inequality

1l=—— w PP < [ — w —_— w PP
1] _<|f+|/z+ ) <|I+| I+ )

1-p
1 —1/(p—1>> !
—_ w < — w,
(\Iﬂ I+ I e
and we get

1 v 1 ) ! ve-nY)
2w} <o [ writes ([ wVe-
(ur/f’“’) . (uﬂ e ) (uﬂ/#” )

1
<(C—— w,
-

proving that w € RH. [

SO
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Factorization Theorem for weights in RH N Af. A weight w € RH; N A
with 1 < p < oo, 1 <r < oo if, and only if, there exists weights wy and wy such
that wy € RH;F ﬂA , w1 € RHYE ﬂA; and w = wowy .

Observe that since U]D<OOA;L = Mi<.RH} every weight in RH is in some A;' )
See [7].
Proof. Let us consider first the cases p =1 or r = oo.
If p=1 and r < oo, we put w; = 1, and wy = w, then obviously wy € RH,;" N A7,
and w; € RHE N Af.
If p>1and r = co, we put wg = 1, and w; = w, obtaining wy € RHL N A;’,
w; € RHE N A;,L .
Conversely, given wg and w1, at least one of them belongs to RHE N AT, (because

p=1or r=00), so one of them is essentially increasing, therefore wow; € RH N
Al (Lemma 4.3).

Let us suppose now, p > 1 and r < oo. Let w = wow;, with wg € RH} N AT,
and wy € RHE N A , we want to see that w € RHT N A;. Note that for w; the
following holds

1 L= :
|I’ / (’I | wl) §Cw1(a—h)1—p ’
I-

this implies, w}_p/ € A7 ( Remark 2.10 ). Let v = w;~ v , then w; = v!'™P with
v € AT, s0o w = wow; = wov' P with wy € A and v € Af (see [7]), and this
implies w € A}

Now
1/ 1/ 1 "
— [ W= — wTwrg(supwl)rC<— w0>
1] Jr )0 I (] S+
1 ™ ) ™
<0 (g o) ()

1 T
<C|—— Wow ,
= (|f++| I 1)

by Lemma 2.5, we have w € RH,". Conversely let w € RH,f N A, then by Lemma
4.4 w" € A;“, with ¢ = 7(p — 1) + 1, there exists vg € A, and v; € A], such that

w" = vy ? (see [7]), or equivalently w = vy o\ "D = 4}/ Tv} 7P Let wo = vy/"

and w; = v, P. We will see that wy € RH N Af. We note,

1 1
— = — < Cinf
mﬂ% mz“- T
1 1/rr 1 "
<C(— =C(— :
= (u+mﬁ+% ) (u+rf+“0

AT A Qn/%yﬁ

< C’lnfvo = C'inf wy.
I+ I+

and also,
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We only have to see now, that wy € RHY N A} and we are done.
First we claim

(4.5) w € Ay then w7 € RHY, for all v > 0.

-
In fact by Holder’s inequality, we have for any interval I = (a,b), <|71| I; w> <

ﬁ J;w™" and as w € A we have that for almost every x € I, Cw(z) > % J;w,
and therefore

w20 fw) s o sogty [e

Let w; = v}_p. As vy € AT, then w; € RHY. Moreover

Lo (e o) =g o (e o)

— | wy | — w = v

11\ e 1] ] S
gm/I (C’mfvl)p 1

C o
Sm/lv% Pyl < O,

i.e. wp € A;_ |

Factorization Theorem for weights in AT.. A weight w € AL if, and only if,
there exists wy € RHY and wgy € A;r such that w = wows.

Proof. If w € AL then w € A} for some 1 < ¢ < 00, so there exist vy € AT and
vy € A7 such that w = vovi_q. Let wy = vy and w; = vi_q. By (4.5) w; € RHY..
So we are done. Conversely if w; € RHY, then wy € A; for some 1 < ¢, i.e., there

exists C such that
1 / )q/_l - 1—q'
— [ wy — w <C,
(III I 1] Jpe !

but then

'—1
(supwl)q/*1i w}_q/ < (i/uq)q 1 wy ‘<,
I- 1] Jr+ 1] Jr 1] Jr+

and we get

1
T w7 <ClInfw -
I+

and it is easy to see that this inequality implies wi ¢ € A7. Thenwv, = wl ¢ € A]
, SO W = Wwowi = wovi_q cAf cAL. O
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5. CLasses Af AND RH,F.

In this section we will use Theorems 3.1 and 3.3 and the factorization theorems
to obtain the best ranges for the classes A; and RH;. As we shall see, the range
of the index will depend on the factorization of the weights.

The following theorem gives us the precise range in A} for weights in RH,}.

1
Theorem 5.1. Let w € RHT, w = wow; with wg € RHY, and wy, € A}, then
w € A; for all p > C, where C = RHT (wg) and this is the best possible range.

Proof. Let wy € RHY, and w; € A . By Theorem 3.3 wqg € A;)" for all p > C.

Let p > C, there exists € > 0 such that wgy € Ap o
1—(p—e€) =s(1—p'), and by Holder’s inequality

1 / ( 1 ( )1_p,)p1 )
=T Wow1 | v—7/7= WoW1 >
- (] e
—1) (p—1)

(p
() (o) (o ) (v )
c 1 I- I+ I+

To see that this is the best range, we consider wgy as in Theorem 3.3 and w; =
1. O

Remark 5.2. Given w € RH;' there exist u € RHL, and v € A] such that w =

uvr. We only have to consider the factorization theorem and choose © = w; and
v = wj. We have to prove that v € A]. Keeping in mind that wy € RH} N AT we
have

so we choose s > 1 satisfying

IN

1 1 1 "
— V= — wh < C —/w < Cwj(xz) = Co(x),
Il (m . ) o) =Cole)

for almost every = € I+, i.e., v € Af.
The next theorem shows us the precise range of the higher integrability of w €
RH Y.

Theorem 5.3. Let w € RHT, w = w'/" with w € RHEY and v € A]. If C =

T

AT (v) then w € RHY for allr < s < CC_’"l. The range of s is the best possible.

Proof. Let r < s < C -, we choose ¢ > 1 such that s < (66311)' As 1< L < %,
by Theorem 3.1 v € RH ., using Holder’s inequality, that u* € RHY and v € AT

we have,
/ N\ Ve
IU o s s r ,uq s)
!II/ \T!/ ( |/I

s/T s/r
1 C
<supu’C v < — u® | inf v

r <u+| r+ ) = ( )

1 S
< Csupu® 1nfv/r<C’< / u> inf v*/"
I++

I+ I++

1 S
<C uvl/r) =
N (\Hﬂ I++

-
+
+

Q
7N
+| =
+
~
+
Jr
S
~_
Vo)
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and we get that w € RH, (Lemma 2.5).

To see this is the best range possible, we choose v € Af as in Theorem 3.1 and
u =1, then w = v'/" € RHf forall r < s < &= (C = Af(v)). If s = &5
and w € RH} then v € RH™, , but we have seen (Theorem 3.1) that this can not

Cc—-1

happen. [

The next theorem shows us which is the best range in RH," for a given weight
in A;.
Theorem 5.4. Let w € Af, w = ww'™P, with u € AT, v e AT and C = AT (u),
then w € RH for alll <r < %, being this range the best possible.
Proof. By Theorem 3.1 u € RH;T for all 1 < r < % and we know that v'=P €
RHZ, then

1 1

- T r ( —’r’(p—l))

|f|/,w 8 m/ﬂ P\
<C 1 U ' 1 vi7P T<C’ inf u ' supv!l~P '
B [I*] S+ [I*] Jr+ B I+ I+

T 1 ' 1 'S
< C| inf u — i) <o —— w | .
N (1”+ ) (|I++| I+ ) N (|]++| I+ >

By Lemma 2.5 w € RH'.
To see this is the best range we take u as in Theorem 3.1 and v = 1. So we have
w=uecAl,andw¢ RH', . O

Cc—-1

Corollary 5.5. Let w = uv' ™" € A} with u € Af, v e A7 and
C = max{Af (u), AT (v)}, then w™ € A} for all 1 <7 < ;&5 and the range is the
best possible.

’

Proof. By Theorem 5.4 we have that w € RH; for all 1 <7 < &2 and w'™? €
RH- foralll <7< 2. Let a < d, we choose b, ¢ such that b—a = d—c = 1(d—a),
and we also choose the point %b. Then, we have four intervals, namely, I~ = (a, b),

I= (b)), I = (¥<,¢), and I = (¢,d). Now

1 1 ) p—1 1 T 1 ) 7(p—1)
_— T T(1-p") <[ = = 1-p
-1 /- (u++| e ) —(m/f") (uﬂ/ﬁ“’ )

<C7,

thus w™ € A}, (Lemma 2.6). Considering u as in Theorem 3.1, we see this is the
best possible range. [

Using Theorem 5.4 we will show the exact range of ¢ < p such that w € A;
implies w € A}
Theorem 5.6. Let w = wv' P € A with u € AT, v € A7 and C = A7 (v), then
w e A(‘; for all 1 + % < q < o0 and this is the best range for q.

Proof. Note that w!™?" = vul=?" € A/, by Theorem 5.4 wl=P € RH forall 1 <
r < % From lemma 4.4 for the classes RH,” and A, we have that w=P)r ¢ Ay
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where ¢’ =r(p’ —1) +1 =
forall 1+ (p— 1)1 < q

To see this is the best range, let v(z) =z = if < 0 and equal to 0 if z > 0 and
u =1 for all z. NotethatveAf and Ay (v) = C. Then w = v'"? € A} and

+
we AJ forallg> 1+ (p— ) . Observe that w ¢ AH—( d

=0 ¢ A_ie, we Af

LS
Finally the last theorem gives us the best possible range, for a weight in AZL.

Theorem 5.7. Let w € AL, w = wowy, wy € Af, wy € RHY and C =

RHY (wy), then w € Al for allp > C. The range of p's is the best possible.
Proof. Note that w; € RHY, implies w; € A} for all p > C, then

p—1
l—p/
w, wow
i o <|f|++/1++< o) )
1 AP 1 AP
< sup(wq) — [ wo [supwi™P / w1p>
< 1p< D (p 0 ) (u|++ b

1 A
C inf -1 / 1-p
e o) st (g [ o

1
<C -
~ ?EE(wO )|I+’ I+

<C’,; inf wy < C,

- (1nf]++ wo) I++

Wo

by Lemma 2.6 w € A for all p > C.
To see this is the best range, we consider w(z) = 0if 2 < —1, [2|~1if -1 <2 <0
andlifz>0 0O
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