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SOMMARIC. 5i siudia un problema unidimensionsle a fron-
ticva lihera, che denva du un modello per Uassorbiinento df
solventi nei polimeri verori, Sisuppone che if probiema abbia
spnmerrie plare & che ] polimerc sia won omogeneo neile
direzione df avanzamento del fronie. S0 prow esistenza ¢
i stabifies della soluzione ed inoltre si deserive {l comporta-
MERIG asfrro b,

SUMMARY, We comsider @ free boundury prublem arising
from a model fur sorpiion of solvenis by glassy polyreers.
We wssume thar the probiem huay planar symmerry, but i is
HoN-Homogeneons in the dircciion of the adwincing frond
We give an exiensive mathemasical enalysic of the problem,
provng existence and sealbilily of the soleton and describing
sovhe asympioncal Belaviours,

1. INTRODUCTION

In this paper we sonsider a ree boundary probiem ardsing
front a model {or the sorption of sofven ts mto glassy polymers.

This model was proposed in |2] by Astarita and Sarti,
Thay assumed Lhut the sorption process can be described
using & free boundary to simulaic a sharp morphological
discomtinuily observed in the nuteral botween a penetrated
zong, with o relafively bigh solvent content, and & glissy
region where the sulvenl concentration is nealigibly small
Gand astually taken 1o b2 7¢ro in the model).

The solvent is supposed to diffuse in the penetriled cone
sceording to the Fick’s law. Moreover the penetrating front
moves into the glassy zone driven by chemical and mechapical
elleets Lhal are taken into accouml by an cmpirical law
relating the specd of penetation to the concentration of
solvent near the front, This law must account for two main
facts observed n the penetfation eapedences: (i) there exiss
a thieshold value Lor the solvent concentralion under which
ne penstration ogcurs: (i} sbove such value the specd of (e
[ronl meresses with the concentralion nesr the front jraslf,
A typical Torm s v =k |&—e® | where v is the [ronl speed,
¢ i the value of the conwentmltion al the frant, e* is the
threshold value and & and # are constant ([2], [$]).
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Ong more condition is requited in order to determine the
front location together with the conoentration profile inside
the penetrated zone. This condition is the mass conservation
aeross the moving irce boundary (see |8) for a detailed
denvation ).

This model has been the ohjetc of anumber of papers ([51],
[2], [1], [B]) where the mathematies of the problem has been
Investigated.

Here we are interested in the case of a slab of non-homo-
weneous polymer, i.c. 4 polymer whose mechanical propertics
depend on the space vanable. In this case the penetration
faw iy generalized to u = f{e, %), where x denotes the spuce
vadable. Denoting by clx, ) the (normalized) solvent con-
centration and by x = s(r} the location of the (ront in the
slab (then O < x < s(r) is the penetrated region at tima r),
the resulting gbsirgcl mathematica] problem can be stated
as follows:

FProblem P: Find a teiple (T, 5, @) such that: T > 0, 5 €
c Yo, T, ¢ = C34D,) N Cily), wher Dy = ix. 2} -
Q< x < 5(r), 0 < r <l T and sanisfying

Cox — 0, =0, indd,; (11
20 =0, (1.2)
el0. 1 =10y, D<= (1.3)
seh = fleiste). b, s(e), DTy (1.4)
e s}, 1) =—$edelsir). ), DT, (1.%)

The funvtion f is assumed to satisfy the followlnz assump-
lions:

FECRY, (F.i)
there exists a non negalive, conlinuwous function ¢*(x)
such that

Ae.x)>0 in F= [ x):e>>e*®x), x>0} and
flesx),x)=10;

[or x > O thers exist two continuous functions Lixi and
€(x) > 0 such that

(F.ii)

c¥xt—elx —h) = L{x)h, forany & €0, e(x)), {F.iith
f.f, existand are Lipschitz continuous in £ (F.ivy
fle, 23>0, lorany (c.x)€EE (F.v)

Here ¢* represent the (rommalized) threshold value Tor the
penetration process. The function £ gives the speed of pane-
tration of the jump in concentration 2s an increasing function
af the amount of the jump itsell (Condition Fov), According
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to the physical scheme of the prowss, £ vanishes when the
concentration cquals the threshold value. Then the condition
(elstr), 1), si0)) € E implies thut the free boundary can move
mward into the gassy zone, We will prove that this condition
i5 always satisfied under our hypotheses.

The most obvious hypothesis is of course that the value
cq. i, the (normalized) value of the concentration on the
fixed boundary, which 5 assumud lo be constant, satisfies
the condition ¢y > ¢*(0), i, the concentration on the lixed
boundary excedes the threshold walue there, so that the
penetration of the solvenl can Start.

Conditions (F.iii) and (F.lv) are tecnicud assumptions, in
particular (F.iii} is u sort of vnc<ide Lipschitz condition for
the function ¢¥.

From the hypotheses (F) it [ollows that there exists &
function ¢ € C,U.'[-L-_') x IRY) such that &(flc, ), x) = ¢ lor
any x > 0and ¢ > o*(x). Mareover ¢ satisfics:

$ €CHE), G=fE)x R, (@.4)
¢ =0, in 7 (dii)
@, x) > c¥ix), forany >0, x=0; (- dii)
"., . x) >0, inG. {ih.iv)

We can use the function & 1o rewrite the penetration law
(1.4) in an equivalent form:

elsled, 1) = glstr), st

In the next sactions we will prove existence and unigueness
of the solution of Problem F, for any T > 0; the continuous
dependence on the datum f, and we will investigate the
asymptotic behaviour of the free boundary.

0<r<T. (14"

2. AN AUXILIARY PROBLEM

In this section we suppose that the moving boundary is
known as a function of the time, x = rir), and we study the
diffusion problem for the conwentration in the slab 0 < x <<
< r(1).

We ussume ¢ € CU[0, 7] N CXO, 1), for some fixed value of
the time T, Moreover we assume

r(0y=10; 2.1
A0 = fleg, OF; 22)
|AN| =K. 0<i<T, (2.3)

where K is some positive constant.

The diffusion problem we have to solve is the following:
find & function ¢ € CXD) N CD), D= lx, N:0<x <
< rir), 0 < 1 & T}, with ¢, continuous up Lo the boundary
x = rif}and such that

€ — 2, =0, in D; 24)
el0, £} =g, 0<r<T; {2.3)
e Arle), £ =—Fogtae), rid), 0<i<T. (2.6

Here condition (2.6) is reminiscant of condition (1.5),
expressed in terms of the function r alone, be. substituting
the value of the function @ to the value of the concentration
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at the boundary.

Exist and unig of the solution of problem
{2.4) - (2.6) have been proved in [6]. Here we give some
estimates of the solution and of its derivatives,

Let us start notiving that, since the function ¢* is con-
tinuous and (cy, 0) belongs to E, then we cn find lwo po-
sitive constants, & and x|, such that £(5, x;) C E, where
E@,x)={le.x)ieg—8<e<e +8,0<x<x).

Naw we define A(D = [0r, 1) 10 < x < vyr +4 Ke?,
vy— Kr < n < uy+ Kr, where v, = fieg. 0). From inequa-
lity (2.3) we get

— Y%
(), Fg) €A C AD, 0<:c:<? : (2.7
We fix 2 time T in such a way that the «boxs A(r) belongs
to the set [0, x,] x SIE(S, x,)) for any 1 <T (our assumptions
grant that T > 0). Then, for any tme 7 < T, we have the
estimate t

0= cy—8 ZOFN. rt)) ey + 8. (2.8)

Since the function ¢ satisfies the heat cquation as well, we
can apply the maximum principle to it and we abtain 4
first estimate:

— (U + Krleg + B) e, (3. =0,
0 <x<r1),

— (2.9)
O<e<T,
The kst incquality, together with the condition (2.5), gives
an estimate for the solution ¢:

cp— fug + K)oy, + 8w, + 1/2 Ky =elx, )¢y,

(2.10)
O<x<rit)y, D<e<T.

Finally we can give a simple estimate, uniform w.r.i. the
function r, by restricting the time 7.
ca— b <elx, D&y <oy 6,

(2.11)
U<e<T.

0 < x <Ir(t),
Rermark 2.4, Tnequality (2.11) imphes that (c(r(£), £, r(£)) €
cEb,x), 0<i<T

Remark 2.2. Once & and x| fixed, independently ol the
[unction r in the class specified by conditions (2.1) - (2.3),
the value of T depends in a nice way on K. In particular it
is always positive for any finite X,

The estimate of the maximum of the fime derivative ¢,
is obtained via the maximum principle, The complete proof,
in the case ¢ not depending on the space variable, is given
in [5] and it works in this case ss well. In particular ong
can prove that ¢ €C*Y(D) and ¢, £ C(D\0, 0}), and
[ 1}| = MK +(§.utp} H(i&.n;; ) (-;'u | r=

(2.12)
<MK +3v)sfdugrsl,, =T,
where £, dots not depend on K, provided that the time T
g b,
is less than 2—"; ;
The last inequality makes it possible to compare two
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solutions. £, and e,, comesponding to two different bounda-
ries x = r (¢hund x = r,y(¢). In fact we have

[egrted 0 = ey, )| Lyt [y —Pollpio7ps (213D

where, wgain, the constunt L, does not depend on K, if
—— b
Ta -I-E, . The proof is ugain the sume as that of the spatially

homencous case in [5]and we do not repeat it,

3. LOCAL EXISTENCE, UNIQUENESS

In this suction we prove the existence of a locl solution
using a fixed point argument. We first define an appropriate
functionsl space. To this aim, lel o be any constant with
O < a1, and let ¥(r) be a positive non decreusing function
defined for 2> 0, possibly diverging for r = 0, Let K and T
be positive conslants.

We denote by (K T, 7. a) the =

4n estimale of the norm of ¢, (x, 1) in the space Cl+e for
some o & (0, 1) (which gives an estimale ol the € norm of
¢,). 'To this aim, let us define z(x, ) = ¢, (x, 1) + FT)EF(2),
ri#), which salves

2, —2, =— FE ), i) + é_((8), r(0)Fie)] —
— P, (), T8,

z, {0, H=10,

z(r(t), £) =0,

Mow, for any 7 & (0, T) trasform Lhe domain {0 < x < r(r),
/2 < ¢ < T}into the rectangle (0, 1) x (7/2, T) by the
clange of vardables ¥ = x/r(r) and apply the Schander asti-
mates (s¢¢ Theorem 5,2, pug. 561 ol [10]) to the trunsformed
function #(y, t) in ordar to obtain the estinmate

&
oy




Hp)
u(x, r):-—[ cly, 1) dy, 4.1)

x

which satlsfies the heal equation in Bg = {(x, £} 1 0 <x £
< 563, 0 < ¢ < T, with boundary conditions u, (0, 1) =—¢,,
ulsie), 13 = 0,and the non-tinear Stefan condition flu, s(r), 1),
s{e)) = $(¢). Then we can prove the repularity of the frec
bouiidary upplying the iturative techniques introduced in
[11] for the linear Stefan problem.

PROPOSITION 42. The free boundary is o strictly incroasing
function of r,i.e. ${O>=0,0<t<T.

Praof, Since 4(0) = fle,, 0) > 0, and § is continuous, then
$(f) > U for some interval (0, 1'). Suppose that 5(r} =<0
somawhere, and Jet £ be the mfimum of such 's. Then
7> 0, and RGBT S P U 0. Frum (1.5)
e llty) L =10 and then (x(ryJ, i) is @ maximum point for
¢ in B, =lix, ) : 0 < x < s(#), 0 < r <z} This implies
that the space derivative of the function ¢, in this point is
strictly pesitive (see [37). and then ¢ (s(t)), ;) > 0, It fol-
lows that the total derivative wr.t. the time of the Tunction
o evaluated along the curve x = s(¢}is positive in { = 1, 50
that e(s(t), 11 is stoctly increasing in an interval fy, #,) [or
some Ty<0 7. On the other side, sinee ¢, is the linst 72r0 of
&4} and {cg, 0) € F, then (c(s(2), 1), s EE lorany 1<),
or e(ste), 1) > e*s(e)), for ¢ < ¢ and c(sr), £;) = ™Gl )
This gves, together with assumption (F.iii)

alstiy) 1) = r‘(.t(ilw.irL = ith

it It

st ) = sty = k)
S L) ——

Finully we pass to the lunit A — 0%, and we et the contra-
dictory inequality
< — elsle), £) = Lis(r ) 5(e ) =0.

dr ficds

PROPOSITION 43, The solution of Preblem £ satisfies the
following inequalities;

e, < ey, O<x ssle), 0P <Y “4.2)
0 < §(r =3, D rsT; (431
—cgf<e,lx, <0, inDg, .43

where §= sup fle, x), B = E Nfle, x) 1e <oy, x <))
E

T

The proof i o strighforward  application of the maximum
principle to the functions ¢ and ¢, , recalling that §is strictly
pasitive.

THEOREM 44. Problem ' admits a solution for arbilrarily
large T.

Proof, Theaorem 3.2 casures that there exists a (unique)
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c* (ot )) = e*(slr, — B D)
= =

solution of the problem up o a time determined by
the estimates of the solution itsell, Let T* be the maxinum
time of existence and supposc that T* < e (7*>0).

Now let us consider the free boundary problem for u
defined by the translormation (4.1)in the region D' ={(x, 7):
20 < x < s(f), T* < ¢< T’} with initial conditions

(T*) =b= Lm 5{f),
i

el
wix, T*I=hit)= lim —f elv. thdy, D<x<h,
¥

T

Notice that lim  $(f) existy because of the monotonicity
[y G

of the free boundary ¥ = (1) for ¢ < T".

In order to prove the existence of  lim  cix, £, we use
g T

Green's identity in the demain [ 1) : 0 < E<s(rh il
crct—el 0 < T < t< T* and let £ tend o s2ro. We
altain:

Ay ot
elx, 1) .=f Gix. 1, & Te(h, T dE +j €3G (x, 1:0,7) dr ~
0 M

i
G ylx, 1 slr), Thelsi), 73 dr,
S

whers G is the Green’s function for the first quarter:
Gt & 1) =Tlx, 0k 1) — Di—x & £ 1) oand I is the
fondamental solution for the heut pperatar:

. 1 1 #Jz{
Tix. 0 k1) = e 5"!”“ 5
W=7 amr—n)
Using the relation &, = — _\'r between Creen's funciion

and Neumon's [unction Nix, £ £, 7) = Ulv, ¢ £, 1)+ =2,
t; £, 1), and recalling lemma 1, pag. 213 of [#]. we oblain;

Ty T
ols(e), = zflf Gl £ T el T dE+[ [ eed 0.7 dr +
o r
(4.5}
i
+ J N (s(e), 15 5(r). T) clsirh r) dr

The first two integrals in (4.5) are obviously convergent.
As to the third one, it is sufficient to recall that s() is
Lipschitz-continuous {Proposition 4.3) and that N Ls(g), £
s{7), 1)< canst. [V (I — 7).

The existence and uniqueness of the solution of the free
houndary problem for w, in the region D' = {bx, 1) 10 <x <
< s(i), T* < t< T}, for a suitable 7' > T'*, s now ensurcd
by [7], recalling that the free boundary s{f) is strictly incroas-
ing, Moreover Lhis solution satisfies u € C*4(D’) N CHHDY),
sECHIT* T

It follows that s{f) and c(x, ) = u (¥, 1) salisly Problem

Puptoatime 7' =>T%, =
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5. CONTINUQUS DEPENDENCE AND OTHER
QUALITATIVE PROPERTIES OF THE SOLUTION

First we state the continvous dependenee of the solution
on the lunction fdefined in (1.4):

PROPOSHION 51. Assume f) . f, ., both satisfying assumplioms
(F}, are the data lor problem (1.1} - (1.5). Lets, ¢, i = 1, 2,
be the comesponding solutions in a fixed interval (0, T), then:

| §1 =4l o, ryy = coDSL, s:? [ Sile, ®h = Fole, x)], (5.1)

where E' = £ N {le, x) e < 6. x < minlsy(1), s,(THL

Pranf. The contraclive character of the aperator & defined
in (3.2) does not depend on J%in fact the houndedness of
§ yiclds a lower bound for & [ndependent ol f, in 2 suitable
time interval [0, T,,|. Morcover & depends continuously vn
14— 2 ke,

The continuaus Jependence Lor large time can be obtained
applying the results of [7] to the solution of the problem
defined by (4.1).

Concerning the monotone dependence we have the fol-
lowing
PROPOSITION 52, Let 5, 65,1 =1, 2, be two solulions of
prablem P, corrssponding o the functions fis £, buth
sulislying assumptions (7, and such that file, x) < file, x)
for any ¢, ¥, Then

S} <aqlt), Ol {5.2)
Proofs Let us consider the comesponding wylx, ¢) defined
by (£.1) Sinee 5;(0) < 5,(0), suppose that a 4, exists such
that 57,0 = 5,504} and sl(r) < szfrj, for any ¢ < e ‘Itwn

dy(2g) 3 840 ). (5.3)

Set U= 1y —uy and Dy = {x, £}:0 Sx<lal), 0 <ty
then v satisfigs v, = v in Do, w (0, 7)) = 0, u(s, (1), £)2>0,
U< 1< 1y, and vls (1), 15) = 0. Therelore v has 2 minimum
in the point (5y(ty ) tp), and then v (sl(ro], ) < 0. 1t fol-
Tows that

Syt — 8,000 = flu , (5,080), ), 5y (8 D —

—Fyly (s () ty) 55(e)) <

iyl sy G Miae (5 (1 ) £g) = uey, (55(25), 1 <0,

with uy (5,000} t0) < p<uy, (55(1,), 4y), which contradicts
(5.3).

Remark 5.3, Lel us consider two different lunclions 3.
c3 with ef < c._f, and comispondently the functions 5 fy.
such thal file, x) = fi{c + o3 —ef, x).

According 4o assumptions (), we have:
L20 in E={es):ed>er, x208
in k2 \E,.

f=0

i=1,32

23 (1988)

Then f, > f, for any ¢, x. Proposition 5.2 ensures s,(r) >
50,02 0,

Some more properties of the solution can be proved if
we specily the beluviour of £ with ruspect to x.
PROPOSITION 54, Assume j'; to be negative. Then:
5.4)
(5.5)

5 0>0, 0<x<slt), 0<T4<T,

e 0,00, 0<r<T.
FProof. Lelw = ¢ then wosolves the heal cquation i.nBT
with boundary conditions w(, £} = 0, wislt), ) aft)+
+ w, (s(£), £) = B(s), where ot} = 20 + f €) le=st0p° iy =
=—ie s +efe, +cf,)L,._,m.

Since oft) and §(f) are non-negative, the maximum prnd-
ple implies that w cannol dsume d negalive minimum nor
vanish on x = s(t), Then w is strictly positive inside Dp. It
follows that the minimum for w is assumed on the boundary
x =0, thatis w_ (0,2)>=0.

PROPOSITION 55. Assume f, to be positive, then the fune-
tion a{r) = e(s(r), §) s decressingin O < ¢ < T,

Proof. Set v = (inic)),,. Theorem 3.2 ensures that v is
conlinuous in l_).‘.. and that v, is continuous in DT\{l]. 0.
Mogeavér ¢ solves

u 20y, 1 W =y =0, inddy, (5.6)

with boundary conditions

v, 1) =— (¢, (0, £)/el0, )%,

visle), ) = G =LAWLy - e

Since w0, 0) < 0 and v is continuous at {0, O}, wis(e), 1) s
tepative in seine interval [0, {y). ‘The maximum principle
{e.g. in the form of Thm, 5, pag. 39 of [9]) applied with
some care Lo equation (5.6) implies that, if wie(r), 1) vanishes
for the first lime al some £;> 0, then (5(1,), ¢,) is 4 puint of
maximum for v, that is v, (s(r), £,) > 0. However v, (5(r,],
1"} = —_fx_fL( —sighi= 1 is non-positive. Therefore v(s(r), #)
cannot vanish, that is 3(7) < £, (¢(s(0), 0), s(0)X(0), O<y<T.
The resull fallows recalling that () = 7 (c(s(r), 1}, s(t)) d(e) +
+ L els(e), ), sta)da).

6. ASYMPTOTIC BEHAVIOUR

In this section we give sume Proposilions describing lhe
behavienr of the solution of Problem £ when ! goos Lo
infinity.

PROPOSITION 6.1, Suppose that a finite ¥ exisls such that
¢* (&) ey, then s(r) < 2 for any 12> 0.

Pruof. Suppose that there exists a Fsuch that s(f) =X, then
{elsth), B, s() & R1\E. However Proposition 4.2 ensures
that the distance of the points (el(s(t), ¢), s(t)) from the
boundary of the set F is positive forany < T,
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PROPOSITION 62. Suppose that the free boundary sir) has
an asymptote al % = xg, then lm e@((), 1) = ¢; and
g

I]jnn Hey =10,
Proof, Letu(x, £} be defined by (4.1), then

eqlx —x) Suix, 0. ©.1)

Fixed an arbitmrily Jarge integer 7, forany a > K letu (x, £)
be the solution of
n =un‘,1’.n Hﬂ:{{x, N:0<x<y,, >4l

SXX

where £ is such that )=z, =x,~— 1, with initia! and
boundary conditions

w b 1,)=0, 0<x<x,, u,0,0=¢cg

u . 0)=0, (>4,

Natice that

ulx, ) <u e 1), In D, (6.2)

Letting 7 tend to infinity, we obtain lim u {x. () = ¢4le —
iy

- ;N) for any n.
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