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Abstracr. We consider a slab. represented by the interval 0 < x < Xp- at the initial
temperature B, = #(x} > 0 (or o, = dg{x) = 01 having a heat flux ¢ = g{1) > 0
(or convective boundary condition with a heat transfer coefficient &) on the left face
x = { and a wemperature condition &(r) > 0 on the right face x = %y 1%y could
be also = x. i.e. a scmi-infinite material). We consider the corresponding heat
conduction problem and assume that Lhe phase-change lemperalure is 0'C.

We prove that cenain conditions on the data are necessary or sufficient in order
it 1o obtain the existence of a waiting-time at which a phase-change begins.

1. Introduction. We consider the following heat conduction problems 10 < Xy S

+x}:
(1) ped, -kf__ =0, Ocrex,. t>0;
(i) Hx, 01 =8y(x) >0, Dgx<n: o
(1) &8 (0. 51 = q(s). 1>0;
(iv) O(xy. 2) = B{1). 1>0:
and

(i) ped~ko, =0, O<x<x, >0
tii) dlx, 01 =a,y{x) >0, 0<€x<x: e
(iit) ke 0.1)=h(D + (0, 1), 1> 0;
{iv) elx,. 0 =5in. t>0.
where p 1s the density, & is the thermal conductivity, ¢ is the specific heat, # is the
convective heat transfer coefficient from a fluid with ambient wemperature ~D < 0
flewing across the face x = 0. The function A{r) represents the temperature at the
face ¥ = x, > 0, and 8, and @, are the initial temperatures for problems (1) and
{1') respectively.
We take, without loss of generality, the phase-change temperature as 0°C and
replace condition (1)(iv) by 8{+x, 1) = Gy(+x) > 0, ¢ > 0 for the case Yy =+
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{idem for Problem (1')). We assume that the data satisfy the hypotheses that ensure
the existence and uniqueness propenty of the sotution of (1) and (1.

We consider the following possibilities:

{a) the heat conduction problem is defined forall 1> 0 {waming-time " = +c);

{b) there exists a time * < +20 such that another phase (ie.. the solid phase)
appears for ¢ > ¢” (waiting-time 0 < (" < +3c) and then we have a two-phase Stefan
problem for ¢ > ¢ In this case, there exists a frec boundary x = (7). which
separaies the liquid and solid phases with 5{i") = 0.

We will separate the cases waiting-time 1" = 0 (i.c., there exists an instanianeous
change of phase) and 0 < 1° < +2c_ These possibilities depend oa the data 8, q.
b for Problem (1) and the data 6,. h. b for Problem (1'). We try 1o clarify ihis
dependence by finding necessary or sufficient conditions on 8. q. b and ¢,. k.
b in order 10 have the different possibilities,

{n [5, 8. 9] the onc-phase Stefan problem with prescribed flux or convective bound-
ary condition at x = 0 is studied.

This paper was motivated by [0, 12, £3] (see also [14]) and the term waiting-
Time was motivated by its corr dence 10 the term a3 used in the porous medium
equation (see, for instance [1]).

In Sec. I[ we analyse problem (1) with a flux boundary condition at x = 0 and in
Sec. Il we study the probiem (1') with a conveetive boundary condition at x = 0.

H1. On some conduction problems with a lux boundary condition. We consider the
following properties for the probiem (1).

Treowrem 1. If the dawa ¢ = g1}, 8y = 8yix). and b = bir) venfy conditions

(b 0<qln) € q. 0 <t g1y with 1, >0:
(i) Gix)20 and B, 2 Byx) > f, > 0.

Osxsxywithf, <8,: (1)
iiil b2 8, and Beyz0. r>o0:

then there exisis a waiting-time £* > 0 for problem (1), (i.c., another phase could
appear at £ > ("), where (" verifies the following inequality:

2 Min(ty. 13}, where 15 = =k pcfie [4¢: . (3)

Froof. It is sufficient 1o prove that 8(x. 1) > 0 for 0 Lxsxand 0SSy,
For the semi-infinite material x > 0, with the same thermal coeficients, we consider
the following iwo problems:

T, —kT =0, x>0, 0<1<iy;
kT (0,1 =q(1), t>0; {4)
T{x,0) = Ty{x). x>0,
with
Bolx), ﬂs:sxu.

Ble). x> Tgo 13

Tot.ﬂ:-{
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pe¥=kV, =0, x>0, t>0;
k¥ 0, 1) =gy >0, 1>0; (6)
Vic,0)= >0, xx0,
whose solutions are given respectively by {3, 4]
o 2
Tix, ”"j; N(x.r:f.ﬂ]T,{{]d‘:-:Ej:mx,r;ﬂ,r‘mt]dr. )

and

Vic. 0= By~ %E‘ﬁ""“ (ﬁ) : o
where
kY = tsﬂ-‘l#*fizl‘ﬂ:["'n-
"=(E} . Kix.1;:8,1)= 1‘1\/‘("“ %

1 J 3
Nx.nj.0=Kx.:5.00«K(-x,1;&, 1)2 erf(x) = 7;]; cxp[—.l'z)d"l':

erfe{x) = | —erfix): ierfclx) = — x erfe(x).

expl—.tz)
x
8]
By the maximum principle (6. 7) we obtain
Ve, ngF(von,  x£20. 0<r<y,.
Tix. g fx.n. O<x<sx. 0srsy,.
because Tix,. 1)< By shin for 01 <1y, ) )
Let B be the function ' = ¢ . which sausfies the following heat conduction
problem:

(10}

pol —kW =0,
Wix,01 = B:,[I).

Oex<x. t>0;
O<rgx: (1)
w.0=51  Wig.0=550, 1>0.
By the maximum principle we have W =8 >0 for 0 £ x £ x;, (2 0. Then,
we deduce that
flx. 1) >80, 0> Vm.r1=ﬁ.,,-2—1d£20 for0gesr, (12)

where :; is defined by (3) proving our assertion.
Remark . "When the daa verify conditions {2), problem (1) represents a h.eat
conduction problem for the initial phase {in our case, the liquid phase) for 1 <7,
REMARK 2. We can see that 1; does not depend on the length of the slab x> 0.

CororLary 2. Under the hvpotheses (2)(i1),(ii1), a necessary condition in order to

. have an instantaneous change of phase (i.c., ¢* = 0) for problem (1) is given by

7{0") = +cc. (13)
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REMaRK 3. If we consider the case

X=43, G(x)28,>0, vx0.
- Fok (14
alr) < gyfn) ﬂ; vr>0,

llmnpmhlem{l}islhutcunducﬁanpmhhnfw&:liq—uid
t I phase for all 1 > 0
:.c..utenumuphm-chnnpmuforw t > 0 because we have

B(x, 1) = Bgy(x. 1), x20, t>0, (15

where 8, is the solution of (1) with data: heat flux {la x=0, x, =
initial temperature §,. It is given by {12) R

Og5lx. 1) = foert (2: r) 20,
Moreover, the panicular case

t?'lll=£%-e,(ﬂ. t>0, ur

shows us that condition {13) is not sufficient in order 10 ha Instant
- s o Ve an instantaneous change
R.Bn.\ud.ll'x,--'-n and Gyx) > f, > 0 for x > 0, th
oy 2 Py X z U. then a necessany
c_nndu_uur: for p:‘oblm {1} to have an instantancous change of phase {i.e.. the waiting:
time i3 1" = 0) is for there 1o exist 3 1y > 0 such thay

Bk
i) > aymn (13;

THEOREM 3,.If the data verify the conditions

x20,i>0. (16

Xp =+x: ﬁsﬂn(xjsﬁ" forx >0,
qmgf—;. O<i<I, withg, >Dand i< f<1. e:

then an instantancous phase-change occurs, that is, the wailing-lime is " =0,
Proof. Let U = U(x. 1) be the sotution of the following heat conduction problem:
pcur-kun=0. x>0, t>0:

UVix.)=2,. x=>0;

kU (0, 0) o
,f-l.
2 :—} >0,
which is given by [3]
2aq, :K(X.I:O.T]
-U A= el ——— ¥
{x. 1) 3! % /; I t. (21

By using the maximum principle we have that Mx, )< Uix. 0 F 20
Therefore, we obtain =

ﬂfﬂ.!}sUfD,r]gﬂl—;‘—lq/%/; r’d:—t (22)
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and, for O<ce=ef2<t <1,

¢ dt_>f‘ dt +f dt il (g)l-m
dvimrh A P '\
Morneover, the temperature on the fixed face x =0 verifies the inequality

80.1n<p - %C, G)Hﬂ <0, (24)

for all # <min(l, 1,), where

(23)

THE-12
«f 94
Iy -_(WC,) >0, as
Cp= gl ™ - 1+ 21 - UVI- 11 >0,

that is, the thesis is achieved.
Remank 5. If we consider the density jump under the phase of change, that is,
£, # p.. and the dawa verify the conditions

Yg= #xl 08P, forxz20,
& . 8 {26)
ﬂllzj’; for:)ﬂwuhq,:-&.

where & .c,.p.a =ik p * are the corresponding thermal coeficients for the
phase i (i = 2: liquid phase. + = 1: solid phase). then the temperature § = E..ﬂ, 5
solution of problem (1). verifies the inequality (5.0 < T.P,.(x. . x20.
1>0. where T....l. is the solution of (1) with initial constant temperature g, and

a flux condition of type g,/vT on x = 0. Therefore. we obiain [2)

ﬂ'l..[ﬂ.llsT.,nl‘_lﬂ.l'}=.eg‘fﬂ—“;:£¢ﬂ'- >0, 2n

that is, the waiting-lime is (= 0 (i.¢., we have an instantancous two-phase Siefan
problem) for data ¢ and &,. Moreover, its free boundary x = 5, (1) verifies
I¢_&t0] = 0 and it is characterized by 6, 4,(5, 4[1),1)=0 forall r>0.

The free boundary x = Sq,.5.10) corresponding 1o the lemperature T.._,' is given
by (2]

S, = 201 (28)
where ¢« is the unique solution of the equation

Fylx)=x, x>0 29

with s 4 .
_ G =X\ _ Kk exp(-x"/a,) .
Fylx) 7, exp (-E?-—) W_Lﬁfttx!ﬂ;) . (30

- where & > 0 is the latent heat. Owing to

B850, NET, 4ls. ,(0,1)=0. foralls>0, (31
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it follows that
525 L )=2wvT, >0, m (32)

From now on we consider the particular case of constant temperature b(f) = b >
0,¢>0 it x = x, and constant heat flux i) =¢>0.r>0 a2t x =0 for
problem (1). The steady-state solution is given by

6 (x)= f(-t -x) -+, (33)

and a necessary and sufficient condition in order to have a two-phase steady-state
Stefan problem is given by
> kbf.\'n. (34)

where Kk is the thermal conductivity of the liguid phase [H]. (See [13. 14] for the
gencral steady-siate case for an n-dimensional domain).

Using the fact that & = 8(x. 1), the solution of problem (1) with data ¢ > 0 and
5 >0, convergesio 8 = B_(x) when 1 goes to + [6], for any initial temperature
6y = 8,(x), we can formulate the fallowing problem: Find the relation between the
heatflux ¢ >0 on x =0 and 2 1ime f, such thai another phase appears for 121,
and then we can reformulate problem (1) in a two-phase Stefan problem for ¢ 21,

We obuain the following resulL

THeoaem 4. Suppose the initial lemperature verifies the condilions b > 8,20 in
[0. ¢} and By(xy) = b. If the time f, >0 and the constant heat flux g > 0 verify

the inequality
bk k
g> ———_.j..._ : ne—, (35)
Tgil —eapl—an 1,/4x3)) g

then another phase {1he solid phase) appears for ¢ > 1, . Moreover. N0, 1) < 0 for
all 2 ¢, and the free boundary x = 5(1} begins at a point (0.1') with 0 < < L.
Proof. The temperature 8(x. 1) is given by

OLx. 11 =0, (x) + 3 C, cos(\fi, x)expi-ari,). 136)
a=il
where
1y? zz
‘.‘: (ll-l-i) ;E. n-ﬁ.l.z----- {JT)
2 A
o fn [650x) = 8, Cr)jcosty /2, x) .. (38)

Therefore, the temperature a1 x =0 is given by
8(0. 1 =b— ?%ln + () +S(0) (39)
with

2= PR 2 = expl~aid )
S(n==3 exp(-atd) | (r-x Yeos(yfd x)dx = —= ———2 {40
a0 g '}: * = E (m+4) &
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and
-3 Ly
S0 = 25 expi-at ) [0 - byeostyfimra. (41)
Ne
We get that §,(1) = v{0. 1) <0 forall 1> 0 because of the maximum principle,
where the function v = v(x. ?) €0 is the solution of the problem
pcv, —kv, =0, O<x<x, (>0;
v(0.0)=0, 1>0:

(42)
vix,. 1) =0, 1>0;
vix. b =fgx)-b<0. 0<x<x,.
By some manipulations. it follows that
0 < |S[0)] = ~Sin < exp {——i%.;] <1 forallzzr. (43)
Therefore. il ¢ and ¢, verify (35), we obtain
00.0 <6~ L2014 510 <0 foraliizy,. (44)

i.e.. the thesis is achieved.

REMARK 6. IF 8,(x) = b in [0. x,], we deduce Syr) = 0 for £ > 0. We re-
mark that inequality {35) was obiained for this particular initial wemperature because
Solx1 €0 in (0. =~ for dyv1€h i [0. x,)-

CoroLLarY 5. IT we consider the 7. ¢ plane and define the following set
bk

ol = exp{=an"t/ 3531}

then we have a iwo-phase problem for all (7. ¢} € Q.

HL. On some conduction problems with a convective boundary condition. Now we
consider the same kind of techniques used in Sec. 2 for problem (1) corresponding
to a heat conduction problem with a convective boundary condition at x =0,

THEOREM 6. T the data @, = 0,(x}, b= b(r). and D verify the conditions
(i) @(x120 and B, Zo5(x)2 B, >0, 0<x<

Q=1{lt.q@)lqg>fin. 1>0}. fui= (45)

(i) binzp, and 520, t>0; (486)
{iit} D>0,
then there exists a waiting-time ¢ > 0 for problem (1'). where 1 verifies the
inequality "
Sa sk fpa(y B
r2y, wls.erul = W (F (l+ D)) < (47)
where F™" is the inverse function of
_esp-x) i
Fix) erfere] " x>0, (48)
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w.nymh.wemﬁnumnmumm:
$(x.0)20. O0sxgx, 120,
Kx.02:0x,1), O0<x<x, 120,
where 2= z(x, 1) is the solution of the following heat conduction problem:
(i) pes -k =0, x>0, i>0;
(i) 2(x,0=f. x>0; {307
(i) t:kto.:)uk(m-:m.m. >0,
which is given by (a® = k/pc):

Tx ity ={f+D) [ﬂ'ﬁ'.‘(ﬁ) +exp (%H}J)] “"‘(EEI?F - q) © s

x20, 120,

(4%

where

hayT
e (52)

Taking into account (47) and [49) we gel
He 020000 2 0. )= ~D+ (B + D)eapinlerfeim} 20, r<i], (53)
because the funciion F(x) verifies the conditions

FO)=1. Flex)=+x. F >0 inR". (54

REMARK 7. We can sec that £; does not depend on the length of the slab x, > 0.
]

From now on we consider the particular case of constant lemperatyre H(1) =5 >
0.7>0at x =x, for problem (1'). The corresponding steady-state solution is
given by

hiD+b)
bult)=b- e

and a necessary and sufficient condition, in order 1o have a two-phase steady-siate
Stefan problem is given by

(% — x), O<x<yx, {33)

kb
h> B-;on (56’
We consider the following problem related 1o problem (1%): Find the relation
between the heat transfer coefficient & and a time ¢, such thai another phase appears
for 1> fy. and then we can reformulate problem (1 ) in a iwo-phase Stefan problem
for 72 1,. We obtain the following result,

THEGREM 7. Suppose the initial iemperature verifies the conditions § > B 20 in
[0. x,] and Bylxo) = b. If the time 1, > 0 and the constant heat transfer cocficient
k>0 verify the inequality

k> glty), (57)
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then another phase (the solid phase) appears for ¢ 2 1y, where the function g = g{1)
is defined implicitly by the equation

wit.gth) =0, >0, (58)
with

M+uw+”rlrj. >0, k>0, (39)
k+hxy

a0 211
A=Y ep [-Mﬂ—ﬁ] 1>0. (60)
am|

v, h)=-D+
2]
Proof. The solution of groblem (') is given by
3 ia'n|si s Costu,x)
olx.) =@ (x)+Y B exp(-pa 1} [Sru{u.xl +5 W2 -

a=]

0gxgxy, t>0,

(61)

where -
2w ] I'{n,{'ﬂ -o.(x)] [Sia[n,,.tl + T‘-Cm,.tll de, (62)
(] -‘u A

and p, =2, /x,, where @, isthe nth root of the eigenvalue equation

X (63)
z;{mrz-rrow. w>0. ,
Maoreover. we gel that
(n-li<w, <ax. neN. (64)

After some manipulation. we deduce that the temperature at x = 0 is bounded
by
ol0.ngwit, . >0, {65}

where the function w has been defined before. ) :
‘We notice that the function g = g{t) is well defined since the functions y = y(1)

and w = wit, k) satisly the properiies
H0* ) =+me,  w+se)=0, (<0, Y50, (66)

(@) (1,0") =+, wil,+:)=-D<0, 130:

oy 2y 0 0. £>0 Wit
b - r>=4q, -
b ﬁ[f.ﬁlﬂl- B'(l-#)'i
Therefore. the function g = g(1) satisfies the conditions
. kb ;
£(07) = 42, 2t+x}=ﬁ. gi<0, vi>0. (68)

By using the inequality {65) we get the 1hesis.



» D, A TARZIA a0 C. V. TURNER
Corurzary 8. We cansider in the plane 1, & the following set:

Ry={{t. )| h> g(n), 1>0}; (59)

ﬂnawhn;n}w—phmpmblmroull (:.&}ekz.
Resmark §. 1 l.heini&inlumptmmisﬁmby x)=b>0 in [0, thea
we have a heat conduction problem for the initial ph::e( for ali (r. .':) e[ Rfl;me

xl=.{u.m|e<unu(§-:_u.r'(u%)‘/"T"' : n-o}. (10)
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FINITE-ELEMENT CONYERGENCE FOR CONTACT
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Abstract. This paper presenis a convergence analysis for the finite-clement ap-
proximation of unitateral problems in plane lincar elastostatics. We comsider in
particular the deformation of a body unilaterally supported by a frictionless rigid
foundation, solely subjected to body forces and surface iractions without being fixed
along some par of its boundary. and establish convergence of piecewise polynomial
finite-clement approximations for mechanically definite problems without imposing
any regularity assumption. Moreover we siudy the discretization of the contact prob-
lem with given friction along the rigid foundation.

I. Imtroduction. This paper presents a convergence analysis for the finite-element
approximauon of a class of umlateral problems in linear elastostatics. which were
initiated by Signorini [17] over fifty years ago. [n particular, we address the most
interesting case from the view of applications and the most delicate case from the
view of mathematics where the linear-elastic body which is supported by 3 rigid foun-
dation is only subjected 1o body forces and surface tractions, but is not fixed along
some part of its boundary. As shown by Fichera [4] and Stampacchia [18], the exis-
tence theory of these semicoercive Signorini problems hinges in the frictionless case
upen the mechanically illustrative condition that the applied forces should form an
obtuse angle with the “directions of escape,” i.c.. the rigid body mations defined by
the geometry of the foundation. Here we prove that this condition, which renders the
semicoercive Signorini problem mechanically definite, is also sufficient for the con-
vergence of finite-clement approximations with respect to the energy norm. For this
convergence result no regularity assumption concerning the solution of the continu-
ous problem is needed, Funthermore, by adapting and extending the discretization
theory of Glowinski (3, 6), the finite-clement approximation is not restricied to piece-
wise lincar trial functions, but trial functions of higher polynomial degree are also
included. Finally, as a first modest step 1owards the more realistic but difficul anal-
ysis of friction phenomena, we tum 1o Signorini problems with given friction along
the rigid foundations and in addition investigate the discretization of the friction
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