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Abstract . — We conmider the supercooled one-phase Stefan problem wilh temperature boundary
condition at the fixed face. We analyse the relation between the temperature boundary data and the
possibility of continuing the solution for arbitrarily large time intervals. We also give a family of
explicit solutions.
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1. = Introduction .

We study a one-phase supercooled Stefan problem in one space dimension, The initial
temperature of the material is equal to h{x). We impose a temperature boundary condition on x = 1,

where the temperatuore f is a function of time.

The classical Stefan problem ( f > 0, b = 0 ) is well studicd in the literature, as for cxample
[3, 11, 18]. Here we will treat the case f < 0 and h <0 that corresponds to a supercooled liquid. The
existence and uniqueness for this problem is proved in [7], where a class of free-boundary problems for
the heat equation in one space dimension was analyzed, releasing the sign restrictions on the data and
the latent heat usually required in the Siefan problem. In the next sections we relate the possibility af
continuing the solution for arbitrarily largs time intervals Lo the sign of

1 t
R(t) =} + Ixh{_x}dx+ I f{r) dr .
0 0
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Problems of this kind have been studied by other authors also in conection with the freezing of
a supercooled liquid. A one-phase Stefan problem with initial temperature h(x) and & heat flux equals
to zero on x = O was studied in [9]. In [5, 17] a one-phase Stefan problem with initial temperature
equel to zero and the heat flux g(t) on x = 0 was considered. Other condition is considered in [6]. On
the other hand, convexity and smoothness properties of the free boundary are analyzed in [8, 13] and
[12, 14] respectively, and a review .on this subject were given in [16, 20]. Moreaver, in [2] an
application to the liquid-phase epitaxy is presented and in [15, 21] a two-phase supercooled or
superheated Stefan problem is analyzed. An explicit solution is given in [4].

In section 11 we give the preliminaries corresponding to the deseription of the problem and we
coneider the case of & temperature boundary condition with a determined sign ( in our case, negative )
and we give some results in order to characterize the three possible cases [7, 19].

In section III we study the case in which the temperature on % = (| is a conslanl in Lime, say
fit) = = B < 0 and we give a family of explicil solulions.

I1. = The one-phase Stefan problem.

Let us consider problem (P) (one-phase Stefan problem with lemperature boundary condition
on the fixed face x=0) which consisl of finding (T.s,2) such that :
()T > 0.
(i) s € C([0,T) ), s € CH(0,T)); 0 <s(t) <1ford <t<T.
(iii) =(x,t} is a function, bounded in 0 < x < sft), 0 £ t <€ T and continvous on Lhe same region ,
except perhaps at the points {0,0) and (s(0).0) ; zx(x,t) & a continuons fometion in ¢ < x < s{¢),
D<t<T; =2pg u; are continuous functions in 0< x < oft), 0 <t < T.
{iv} The following conditions are satisfied :

2.1 tgx— 7 =0 ml&={mqm<:<qmn<u<TL
(2.2) {0) =1,

{2.3) z(x,0) = h(x), l<cx<1,

{2.4) 3(0,t) = f(t), 0<t<T,

(2.5) 2(s{t),t) = 0, I<t<T,

(2.6) e (s(t)t) = — &(t) 0<t<T ,

where the function f is a won posilive piecewise continuous function on every interval (0,t), t>0 and

h(x) s & given non positive continucns function in [i),1].

Moreover, if the solution exists, then three cases can occor [T, 19] :
(A} The problem has a solution with arbitrarily large T.
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{B) There exists & constant Ty > 0 such (hat IIETE a(t) = 0.

(C) There exists a constant T > 0 such that ’.Iill"l.r_ 8{t)>> 0 and :I‘ErnT_' #(t)=—co.
S C

Au we shall see, any of these cases can actually occur with an appropiate choice of the funclions
h = h{x) and f = f(t) in (2.3) and (2.4) respectively.

If (T,s,2) solve (2.1)—(2.6) then it is well known that the following integral represeniations are

satisfied : i ¢ s(t)
(2.7) sit) =1+ I hix) dx — I x{0,v)dr = I 2(x,t) dx ,
o 0

. 1 t #(1)

(2.8) [‘{";'2%'1} = J: h(z) dx + I f(r) dr — i x g(xt) dx ,
o 0

A v a(7) s(t) 1

(2.9) [ﬂa_—ll =12 J dr I e(x,7) dx — I #(x,t) x* dx + Ih(xj x%dx .
0 0 0 0

The first simple properties of the solutions of (2.1)—(2.6) are summarized in the following :

PROPOSITION 2.1 .— H (T,s,3) is a solution of Problem (F), then :

i)z <0 inDp.

(i) s(L) 5 a decressing function in (0,T) .

{iii) If b'(x) > 0 and f(t) < 0, then z,(x,t) > 0 in Drp.

(iv) f h{x) = C — 1, with G = Const. < 0for 0 < x < land f{t) > C — 1 for t > 0, then no
solution to Problem (P) can exist.

PROOF.—  (i)—(iti) follow fram the maximum principle.

(iv) For any solution (T, s, z) of the Problem (P) it would be 0 < s(t) < 1, 0 € L < T and
#xt) >C—1 in Dy because of {2.1) = (2.6) and the maximum peinciple. Thus, from (2.8) we have

Trey 2
(s(t) I;A:!:—I—(C—I}E‘jzﬂ-
2
i e E"_ﬂ;lj < 0, which is a contradiction to C <  and s{t) < 1.
BEMARE 1 -— A general resnlt of non—existence was given in [ 10 ). A sufficient condition of non-

existence is given by h<—1 in a left neighbourhood of x =1, independently of Lthe behavior of the
boundary temperature f = f{tjon = = 0.
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PROPOSITION 2.2 .— If (T,a,2) is a solution of Problem (P), and

(2.10) M) > mf) (L -x0<x<1,
then
(211) a(xt) > m(f) (1 — x) in Dy,
i = t 1
(2.12) "—1{,‘—] [1 + m(f] — m(D) ‘T('J <i+ 1 fr) dr + ! xh(x)dx, 0 €t < T,

where m(f) = nn%ing[[t] "
PROOF .— (i) We define the function :
Wizt =m( (x = 1), inD={(n):0<x<l0<t<T}

By comparing W with z and using the maximum principle we obtain (2.11). By using (2.8) we obtain
(2.12).

We proceed to characterize cases (A), (B) and {C} depending on the value of R(i), where

1 i
(2.13) R(t) = .5 + I x h(x) dx + J f(r) dr
0 0

We remark that R{t} = f{t) <0,0<t < T,

PROPOSITION 2.3 .— We have that
(i) Case (B} = R(Tp) = 0.

T 1
(1) Case (B) = [ ax(0,r)dr — 1 + | h(x) dx.
0 0

(iil) Case (B) = 2 [ | =(x,r)dxdr = - é - }1’ hix) de.

B
PROOF .~ Owing to Propesilion 2.2, we can perform the limit for t — T in (2.7), (2.8) and (2.9} in
arder to oblain the above three relations.

EROPOSITION 2.4 .— Assume h{x) satisfies : There exiats a positive conatant 11 such thal
(2.14) iz > —H({l—-x),0<x<1,

and let (T,8,2) be a solution of Problem (P) such thal
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(2.15) =, .is“fn:r} (L) = 0.

If there exists two canstants d € (0, s.p), 25 € (0, 1) such that 1 d < %, In(2) and

{2163 ":‘(t'] o dI t:l 2 -80St T,
then
(2.17) §(t) > min— B/ 25, 1o (1 — 20) /d].

BROOF .~ Tt is the same &s the one for the Lemma (2.4) in [9].

COROLLARY 2.5 .— If case (C) occurs, the isotherm 2 = — 1 exists and reaches the free-boundary at

t:TC_

PROPOSITION 2.6 .— Let (T.s,2) be a solution of the Prablem (P). If R(Tg) = 0 and —1<m(N<0
then we have the case (B).
PROOF .— We replace R(Tg) = 0 in (2.12) of Proposition (2.2) then we get

HT 8T
208 (1 4 ) — min SGR <0
Since 1 + m(f) > 0 and m(f} < 0 we conclude that 8{Tg) = 1, i.e., case (B),

ZROPOSITION 2.7 .~ If (T2} is a solution of Problem (P}, with I € L'(0,00), b verifies inequality
(2.10) and we have case (A), then

(2.18) R{t) = 0, t>0.
PROOF .~ Using the equality (2.8) and the hypothese we obtain the following inequality
#(t)

1
{2.19) —I x 2(x.t) dx £ Ifl, +m[ﬁjx{x—1)dn = It —%m{f) =0,
0 i}

where C > 0. From the above inequality we conclude

s(t) o(t)
I x? (— :{x,l}) dx < I x (— :(x,t}) dx < C.
0 0

The following eslimation is obtained by replacing the above inequality in (2.9)



T s(r)
(2.20) ﬁfdrl Hxr)dzxdr 2 —C—§,t20.
o0

Now suppose that there exists a Ty such that R(Tg) < 0, then from (2.8}, it follows that

) 1) ,
(2.21) J (= 3(x0)) ax2 I ~(x5x1)) ax = ‘_S‘-]- R(t)> — R(To) > 0, t>To.
0 0

If we integrate with reapect to time the last inequality, it follows

(2.22) l I zxr)dzdr € R{To)t,t > Ty
Dy

contradicting (2.20).

PROPOSITION 2.8 .— If (T\s.2) iz a solution of the Problem (P) and the functions h and { satisfy the
following hypotheses :
(i) h = hix) < 0 is an increasing function in [0,1];
(ii) f{t) < 0 is a decreasing function of £, t > 0;
then Case (C) implies R(T(y) < 0.
PROOF .— From Proposition (2.1)(iii) we have ex(xt) > 0 in D, From Corollary 2.5 the isotherm
z = —1 must reach the free boundary at T = TC , then the domain is divided in two regions, and
#(xt) € —1 to the left of the isotherm 2 = —1. If we replace this estimation in (2.8) we get

a(TC)’ L J Ta B(Tc)
(2.23) Ze — > xh(x)d:+I I(r}dr+J £ @,
0 0 0

2 z
ie. 259 > rerey + 252 Then R(TQ) < 0.

COROLLARY 2.8 .—If (Ts,z) is & solution of the problem P and the functions T and f salisfy the
following hypothescs:

(i) b = h{x) € -1 in (0,b) , h{b)=-1 and -1<h(x)<0 in {b.1), with be{(0,1).

(ii) ~1<f{t) <0 in (0,Tg), f{To)=1in [Tq,T¢) ; f{t)<-1 in (Tg, Te)

then Case (C) implies B{T) < 0.

PROOF .— Using the same methods from Proposition 2.8, one obtaing a region where z <-1 to left of
one isotherm a=-1. In this region the inequality (2.23) is hold.

COROLLARY 2.10 .— If R(L) > 0 for every t > 0, then we have case (A).
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REMARK 2 .~ In the same way we can obtain the same results for Lhe solid phase averheated,

II1. — The case f(t) = Constant.
In this section we consider the case in which the lemperature 2(0,t) is & constant in any lime,
say f(t) = —B < 0 (B>0) and the initial temperature hix) = 0.

As a trivial eonsequence of Proposition 2.7 no global solution exiat in this case, so either (D) ot
{C) must occur. Moreover, one can easily prove that the solution, for a given B > 0, exists for any t <
T, with T 2 5h5

FROPOSITION 2.1 .— Let (T.s,3) be s solution of the problem (P). F0 < B < 1 then we have case
(B).

PHOQOF .— Using the maximum prineiple it follows that 2(x,1) > —1. From Proposition 2.4 case (C)
is excluded. Then only case {B) is posaible

PROPOSITION 3.2 .~ Let {T;s,2) be & solution of the problem (P}, then

(3.1) #(x6) 2 =B erfe( 2e ), in Dy .

PROOF .— This follows from the maximum principle applied to 2(x;t) — w(x.t), where w is the
solution of the heal equation in the first quadrant x > 0 and t > 0, with the following boundary
conditions : w(x,0) = 0, x > 0 and w(0,t) = —B, L > 0. By the other hand, w is given by

= X
(3.2) wixt) = —B erfc( B ) x>0, t20.
As a consequence of Lemma 3.2, we have the following estimate on B for the case (C).

EROPOSITION 3.3 .— Let {T,a,2) be a solution of the problem (P). Then, B < % is a necessary
comdition in order Lo have case (B).
PROOF .— From Lemma 3.2 we can deduce that

{3.3) 12(0,) > wy(08) = ﬁ.t 2
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We replace the above estimation in (2.7) and it follows

1/28
(3.4) 12 £ j-q]?dr: 2B
D
PROPOSITION 3.4 .— The following inequalities hold :

(3.5) s{t) > I2Bt, D <L < :I'IH
_2B 4k
(3.6) s(u)gl—r'“'_—ﬂim;l;.ugn,o‘:ncil

(3.7 s(t) < —‘%’-‘.ug:s i 0<B<L
= e

PROOF .— (3.5) and (3.7) follow by replacing #(x,t) < 0 and ®(xt) > —B respectively in (2.8).
Moreover, (3.6) follows by replacing 2(x,t) > —B and the estimation (3.3) in (2.7).

From now on, we shall consider the particalar caze
(3.8) fit)y=—B<0,t>0 (B>10)

corresponding to conditions (2.1)—(2.6) with an initial temperature h = h{xz). This problem will be
denoted by (Pg).

We shall give an explicit solution to problem (Pp), when the condition
(2.9) #0) <0
is considered.
PROPOSITION 3.5 .— The real number ' > 0 and the functions x = s(t) and s=u(x,t), defined by
(810 5{1,1}=@-L), De<x<a(t)l<t<T,

(&)

i & solution of (Pg) if and only if the function & = ®(€) is given by
(3.11) ®(€) = —B + %—) F(né)

where 77 > 0 is a solution of the equation
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(3.12) Gix)=8.,x>0

with

{(3.13) Fix) = T & dr, G(x) = x expl —x%) F(x).
0

Moreover, in this case, we have

(3.14i) ot) = {1 —dn’t =T —LOCLLT,
(3.14il) T= # >0, 0)=-2¢" <0,
(3.14ii) b(x) = #(x), 0 < x < 1.

PROOF .— The function & = ®(£) must satisly the following ordinary differential problem :
(3.15) @"(£) + #(0) £ ¥'(€) = 0, 3(0) = B, &(1) = 0.

From (3.15) we obtain the thesis.

BEMARK 3 .— (i) Let f; = f;(x) be the function defined by

(3.16) fi(x) = exp(—x*) F(x) > 0,x >0 ( Dawson's intcgral [1] } .

‘Then, we have the following properties.

(3.171) f,(0y =10, fi{+oc) =10,

=10 if l<x<x, -
(3.17ii) Lix)=f'x)=1—-2xfiix} = |[=0 if 1I=1x,

<0 if XX,
where

(3.17i) x, = 0.924, fi(x,) = 0.541.
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Moreover, we have

<0 it 0<x<x,
{3.07iv) £"x) = 0 it x=x,

>0 if XXy,
where
(3.17%) xy = 1.502, fi(x;) = 0.428 .

{ii) The function G = G(x) = x f,(x), defined in (3.13) verifies the following properties :

(3.181) Glx) =1 (1-16(x)) G(0) =0, G(x;)=G(+c0) = ko
(3.187) Glm) =00 + = 6(x) = — 55') = - 1 "), G'0) = 0,
where

(3.18iii) Gy = ng;; (G = Glxg) = 0.645.

CORQLLARY 3.6 .—i) The equation (3.12) has a solution 4 > 0 if and only If the datum B satisfies
the inequalities

(3.19) 0<B <26y, (with 2 Gyg =1.29).

() If0 < B < 1 then the number 7 > 0 is unique.

(Wjif 1 < B < 2 Gy there exist two numbers 5, = 1,(B) and 5, = y,(B) which satisly the
following inequalities

(3.20) 0<x < <Xy < g

and the limits

(3.210) lim n,(B) =x, lim  1y(B) = +¢c,
B—1T B—1t

(3.21ii) B, M) = gl H® =x.

(iv) f B = 2 Gy then the number 5 = 5(B) is unique and given by
(3.22) n= rrl:EGM} =Xp.
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FROOF . —(i), (ii) and (iv) follow from the propertien of the function G and (3. 18i,1,§ii).

(ii1) Since G ia an increasing function from 0 to G in [0,x;] and decreasing function from Gy ta L in
[x3:00], then for the case 1 <B«<2Gyy there exisl two numbers 5;=,(B) and g,=n,(B) which satisfy
the inequality (3.20) and the Fmits (3.21 i,if).

THECQREM 3.7 .— If we choose & parameler 5 > ) we obtain that the following family of functions :

F[frﬁ}
(3.23) sat) =~ 26(n) (1~ —pr=1 0<x<s(t)o<t<T,
(3.24) s(t) = J1 — 497, t<L<T,
(3.25) T= # >0, B = 2G{n),
(8.26) b{x) = — 2G(n) [1 - F;'E;}‘) I De<x<l,

iz solution of the supercooled one-phase Stefan problem (Pg). Moreover, we have the case (B) and
(3.27) {T), 5 o=R", {BY, 5 = (0,2Gy),

where Gy, is given by (3.18iii).

PROOF .~ It fellowa ftom Propetition 3.5, Remark 2 and Corollary 3.8,

BREMARK 4 .— The solution (3.23) —(3.2G), for each 5 > 0 verifies the following equalities

1
(2.28) [ b2 dx = — [1 — exp(—7)],
0
1
(329) iﬂhixldx=—%+8='1“G{1:)=—%+BT,
[
— 4
(33“} i[!x[ﬂ"f:] dr = %T m, 0<t<T,
T
(3.31) _[ 1o (r) dr = eap(—nP) .
0



[t ia important to remork what is the physical meaning of the coeflicient B.

BEMARK § .— We consider the supercooled one-phase Stefan problem in physical variables :

pely —kidyy =10, D<y<rr) b<r<rg
f)=bz>=10,
(3.32) 6(1,0) = $(y) , b<y<h,
filr) =—8y <0, Dt <rg,
#(r(r)0) =10, 0<r<T7o,
k 8y t(r),r) = = p li(r), d<r<rg,
where
# : temperatura, 7 1 Lime,
(3.33) ¥ 1 spatial variable k : thermal conductivity,
p : mass density ¢ : specific beat,
{1 latent heat of fusion.
We can obtain the dimensionless problem (PB} by choosing the [ollowing variables :
I=§. t=;§F§1". T=p—:kb1fnl
(3.34) s(xt) = ? ) s(t) = L{El ~
s _cbg
hix) = E #(¥), B= Tt

that i, B is the Stefan number.

BEMARK 6 .— If, in pmhhm{PB],w:pufnrm the classical transfarmalion =

0 (1)
(3.35) ulxd) = j { _[ [1+ 2(ed) | da } g,
5 g
then we obtain the following oxygen consumption problem
ug—uy =1, 0 < x < s(t), l<t<T,
5(0) = 1,
(3.36) ulx,0) = H{x), I<x<1l; uf0t) =Ggft), 0<t<T,

ufs(t)t) = ugla{t)t) =0, O0=<t<T,
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where

(8:3) B = L5 B+ 200 (B0 g,
(3.37ii) Colt) = %ﬂq —B(T-t)>0

with

(3.38) Wix) = (x* — §) F(x) — § expla?), x>0

Mareover, the [unction u = u(x,t) is given by :
(3.39) ) = Ly Bat o ST TO) ) w1
On the other hand, we have

lz X
(e = (1 = B) x — exp(—1") exp( 2L ) () w),
(3.40)
ux(0,t) = —exp(—5*) o(1) < 0.

REMARK 7 .— (i) The function W = W(x), defined by (3.38) verifies the following properties :

3
w(0) =0, Witeo) =400, Wlxy) = Min W(x) = — ) Jeied.
(3.41) W) = — %"" G'(x), W) = —1,
Wix) = — expl(x?) 1), wHix) =2 F(x).

(i) The function I = H(x), defined in (3.37), verifies the following properties (H""(x)=1 + h(x)) :
_ fifn) oy — — - Thepy — 1 _
uO) =335 B = -exp(~r"), BO)=1-B,
{3.42) H(l}) =0, H{1) = 0, ') =1,

H(x) > 0, H'(x) < 0, ¥ xe [0,0).
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On the other hand, we have :
(3.43) H'(x) >0, ¥ x € (0,1} YEe],

and B < 0in [0.8], HY(§) = 0 and H"” > 0 iu (£,]], where § € (0,1) is the unique solution of the
equation
{344] h("] =-1 ] xE [ﬂ,lL

forthecose 1 < B < 2Gy -
(ili) The function u = ufx,t), defined in (3.39), verifies the following propertiea :

u(gt) <0, 0<x<s(t),0 <t <T,
(3.43) 0<ulxt) <B(T—1), 0<x<alt), 0<t<T,
—B<mlxt) =axt) <0, 0<x<e(t) 0<t<T.

REMARK 8 .— If £ > 0,h > 0 and we impose the condition #{0) > 0 then we obtain the classical
Lamé-Clapeyron solution instead of the one obtained in Proposition 3.5.
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