The Small Dispersion Limit for a
Nonlinear Semidiscrete System
of Equations

By Cristina Vilma Turner and Rodolfo Rubén Rosales

Numerical experiments that illustrate the cmergence of oscillatory behavior
in the solutions of a dispersive scheme approximating the Hopf cquation are
presented. The oscillations arise at the same time that the classical solution
of the Hopf equation develops a singularity and generally have a spatial
period equal to twice the grid size. Modulation equations [or these period-two
solutions are derived. The modulation equalivns have both a hyperbolic and
an ¢lliptic region. The period-two oscillations break down after they enter
the clliptic region, and the solution hlows up. We give a local description of
the blowup by an exact solution. This kind of phenomenon (Lhe blowup) has
not been observed for integrable schemes. The modulilion cquations also
have the unusual featurs that they admit (some) shocks when crossings of
characteristics in, the hyperbolic regime occur. Other crossings lead 10
breakdown of the hinary oscillation description. with oscillatory hehavior of
a more complicated nature arising.

1, Introduction

In this article, we cxaming the large oscillations arising in a dispersive
semidiserele approximation 1o the TTopf eguation initial valuc problem for
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o= glx,),
u, + (u?), = 0,

u(x,0) = f(x),

(1.1)

where f= flx) will (generally) be smooth. Various (appropriate) boundary
conditions will be used to limil x 1o 4 finite interval.

The approximation we consider is given by the following semidiscrete
{continuous in time, discrete in spacc) dispersive difference scheme

. 1 a .
uﬂ+iﬁ{u;_.1 —u,_,} =0, (1.2)

where n is an integer index, 0 < k=1, &, = (¢) and the dot indicates the
time derivative: «, —(d/4ff)u,. The interpretation is that a spatial grid,
X, =#nh+ ¥y, with uniform spatial erid size #. has been introduced, Then
ulr)=u(x, ¢) and (u*), in (L.1) is replaced by a centered difference
quotient. :

Initial conditions [or (1.2), consistent with the discretization above and
(1.1), are given by

u (0) = f{x,) for x, = nh + x,, (1.3)

where &, is some arbitrury fixed constant. Various {appropriatc) boundary
conditions arc uscd to restrict a2 in (1.2) to a finite range—say 0 <n < N,
corresponding to x; = x =< x,+ Ni in (1.1). Then the limit h— 0, Nk=
constant is considered for the solutions of (1.2)-(1.3).

The resl of this introductory section is organizcd as [ollows; First, in
Section 1.1, we give some motivation and hackground on a related problem.
Nest, in Scction 1.2, we introduce the gencral kind of questions that
motivale us and form the background for our ongoing rescarch ellort, which
we starl reporting in this article. Third, in Section 1.3, we explain how the
problem (1.2) (1.3} and the limit A— 0 fits in the context of the gencral
problem deseribed in Section 1.2, Next, in Section 1.4, we relate our rescarch
to work by olher on schemes similar to (1.2). Tinally, in Section 1.5, we
conclude with a deseription of the contents and results in the rest of the
article,

1.1 Motivation and background

Assume in {1.2) that u(t)=ulx,,1) for some smooth u=u(x,1), as (1.2)
presumes as an approximation to (1.1). Then expanding «, , in a Taylor
series centered at x,, the leading-order truncation errar for the scheme (1.2)
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is found to be
u, +(uy, + h? 1 = O(h*). (14)
f fj Faxr

Tt follows then that the continuum limit (& = 0) of (1.2) should present
many similarities with the well-understood zero dispersion limil (& —» () for
the Korteweg—de Vrics initial value problem

u, +(u*), + €u,,, =0,

u(x,0) = f{x).

(1.5)

This prohlem has been studicd by Lax and Levermore [1] and Venakides [Z1.
A very complete review of the state of the field for this and related problems
was done by Lax et al. in [3]. For the sake of completencss we bricfly
cnunciate the results in 1, 2] for the behavior of the solution n = ulx, &)
of (1.5) in the limit € = (. :

(i) Aslong as the problem (1.1) has u smooth solution u = u(x,#), then
the solution to (1.5}—with the same imitial data—converges uniformly Lo
w(x,t). as € - 0. In fact, it is well known that the classical solution of the
Hop( inilial value problem (1.1) ceuses o exist and develops an infinite
derivative after a finite time 7, for any initial data with a decrcasing part,
cven if the data are smooth. But, as long as this solution remains classical. a
Strang-lype convergence theorem [4] assures us that the solution of (1.5)
(respeetively (1.2)-(13)) converges strongly to it as e — 0 (respectively
h—0).

(i) For t > 1y, the breakdown lime for the solution of (L1), ulx,(;e€)
develops oscillations of (1) amplitude and O(e) wavelength. Il x = & is
the space location where the infinite derivatives for the solution of (1.1)
oceur when ¢ = ¢, then the oscillations in u(x,¢; €) start there, on x — x,,
und spread in time over a spatial interval of length O(r —r,). Thus, for
t > 1, the limit € = 0 of wlx,r; €) exists only in the weak sensc.

(iii) For ¢ immediately after #, Lhe oscillations in the solution u — ulx,1; €)
can be deseribed in terms of a modulated single-phase solution of (1.5)—a
traveling wave solution of the Kortewcg—de Vries equation (1.5), u = I(8),
where U is a 2aeperiodic function of ¢ and 8 = (kx— wit}/e. The single-
phase solutions of (1.5) can be characierized by three independenl parame-
ters, for example: mean value B, amplitude A, and wave number k. The
wave frequency is then given in lerms of these by a dispersion rclation
w=rwl @3 A k) (see [5]L Then the modulation equations arc & sct of
(hyperbolic) equations describing the evolution of these parumciers over
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space—time scales (x,r) much larger than those of (e) given by 8. These
cquations include the description in (i) since: When A =0, B sutisfics the
Hopf equation and k becomes a “ghost™ variable, with no mcaning lor w.

{iv) The description in lcrms of a single-phase solution may cventually
break down, as the modulation cquations are nonlinear hyperbolic and will
(when their characteristics converge) develop infinite derivatives.! Then the
description of u = u(x,t; €) past this second time of breukdown, t=tz,,
requires the modulation ecquations for two phases {(with five independent
parumeters), also hyperbolic. This process can repeat itself again and again,
wilh a new phase (and two new parameters) appearing (gencrally) al cach
wave breakdown by converging characteristics of the modulation cquations
at the prior level of complexity.

The deseription of the limit € =0 of (1.5) thus requires the use of the
modulation cquations for n-phases (n =0, 1, 2...)% involving (Zn + 1) hyper-
bolic ¢quations in (27 + 1) variables (c.g., 7 amplitudes, n wave numbers and
the mean level, althongh this is not the best set of variables to use). The
weak limit @ of the solution of (1.5) as € — 0 was first studied by Lax and
Levermore in [1]. Their description of the limit is in terms of a neat
quadratic minimization problem subjected (o inequality side conditions.
They cleverly show that the solution of this minimizalion problem is equiva-
lent to an capression for @ in terms of (2n + 1) purameters® that satisfy a set
of nonlingar hyperbolic equations, which tum out to be the modulation
equations. Venakides [2), in a very thorough sct of papers, completed the
picture outlined in (i) through (iv) above. Further relevant work was done by
McLaughlin and Strain [6], Tian (7], and Wright [8]. The question of what
are the n-phase modulation equations for the Korteweg—de Vries equation
was considered dircetly (independently of any connection with a small
dispersion limit) by Flaschka et al. in [9].

1.2 Staterment of the general problem

The work just described depends crucially on the fact that the Korteweg—
de Vries equation is completely integrable, with an associated inverse
spectral transform (scc [10]) that allows for the general solution 1o be
written exactly, at least in principle. For more general nonlincar dispersive
systems, even though the analogs of (i} through (i) above may siill make
sense (and be true), (iv) will not even be meaningful. This is because then

YAlsor if the Hopf cquation fas in (i) breaks down st o different Tocations, two {expamling}
oscillatory pepivns (Jescribed by (il will develop, If these repions “pollide,” o hreakdiown sceirs,
Simce m fact the Hepf cquation is meluded in the modulation cquations menticosd in (1) as =
speeinl linil, (his is actually not u different enss.

*The case m = 0 correspomds to the Hopf cquation: mean fevel onlby.

*Fur seme inleger pothat may change in lime.
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even the meaning of a multiple-phase wave solution is rather unclear—and
aticmpls (o lackle the question by small amplitude expansions lead to stall
divisors problems, One may wonder then how much of the “orderly” fashion
in which new phases appear for equations such as (1.5) depends on their
intcgrability and how much reflects the “general” behavior of weakly disper-
sive nonlinear systems. Tn fact, one should even wonder il the notion of
“phasc™ itsell is an appropriate tool/concept in this conlcxt, or just a
peculiarity of integrable systems.

To be more specific, for continuous (governed by p.d.e's) dispersive
systems, a fairly general modulation theory for single-phase waves® can be
formulated (see [5]). But the equations of this theory scldom allow solutions
to exist for all times, even with smooth initial data. A frequent difficulty is
that, because the equations are nonlincar hyperbolic they develop infinite
derivatives in the solution (by crossing of charactenistics) after a finite time.
A sccond difficulty is that the eguations may change type® (becoming
clliptic). Natural questions one may ask are then:

(v} Whal happens with the solution to the dispersive system that the
modulated wave describes after the breakdown of the modulation equa-
tions?

(vi) Can we deseribe the evolution of this solution, past the breakdown
time, in some way that involves only “global” parameters, without need to
follow the details of cach oscillation in the solution?

(vii) Elaborating more on (vi): Is there some morc general theory than
modulation theory—as presented in [5], say—that would be able to carry us
beyond the breakdown times?

When the breakdown oceurs because of the crossing of characteristivs in
the modulation equations, then it is natural to interpret this as having
waves" (that were scparaled in space initially) converging into the same
region of space. This suggests thal a multiple-phase region ought to develop,
which agrees with the behavior of (1.5), as described above. This simple
picrare is complicated, for nonlincar dispersive S‘_?SIEHIS,? by several faclors:

(viii) The waves interact. Thus, once two OT MOTC Waves converge into a
region of space, new “objects” may be gencrated. Then these interact back
with the original waves, and s0 on. There is no telling where the process may

*1t is crudal for this theery thal the notion of a perindic planc seady traveling wave has 2 clesr
oG aning in this cane.

*This is related to the underlying modulsted periedic plane steady wave Lecoming wnstahle. Then
the notion of o slowly varying periodic plane wave ¢eases 1o make sense and modulution beony
breaks down, Whatever happens afterward is unlikely v be modelicable by o modmlation “type™
thoory.

“ Fach with its own phuse, amplitude, elc.

" For linear systzms the simple picture applies.
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¢nd. ‘This is illustrated by the difficulty in giving 4 clear meaning to the
nolion of a “multiple-phase” wave for general nonlincar dispersive systems,
mentioncd before,

(ix} Waves cun be generated out of “nowhere.” This is illustrated by the
situation in Equation (1.5) (see (ii} above) where the breakdown for the
Mopl cquation leads to oscillations that were not prescnl indlially.

In any cvent, after a hreakdown ol this kind, we generally expect the
solution lo Temain “oscillatory”—in particular with a weak limit (only) as
the dispersion vanishes (Yzero dispersion limit™). In Lhis case something like
(vii) scems like a reasonable hope, even il “hard.” On the other hand, when
the breakdown is due to the modulation cquations becoming elliptic, violent
departures from the “simple™ picture provided by modulation theory may
occur and then (vii) is probably too much 10 expeet— al least with any
degree of gencrality,

Woe nole that for continuous nonlincar dispersive systems that allow
arbilrury “mean values” in their periodic plane travcling waves (c.g., the
Korteweg de Vries equation, (1.5)) one can consider “zero-phase”™ modula-
tions, As these cyuations break down, in many cases the problem should be
tractable within the context of the general theory in [Sl—with the broak-
down signilying that a single phase is generated.® This issuc was first
explored by Gurevich and Pitaevskii in [11], for the particular case of the
Korleweg—de Vries equation {using the general theory in [5], not the inverse
speetral transform). A general analysis seems lacking, possibly due 10 the
fact that the modulation equations, as given by the theory in [5], can be quite
complicated— cxcept in the “near-linear™ regime,

Finally, we remark that this limiting behavior of nonlinear dispersive
systems contrusts shurply with that for solutions of any »ero dissipation limil;
for instance Lhe limit as € — 0 of the Burgers equation

u, +(u?), — e’n,, = 0. (1.6)
In this case the solulion converges almost everywhere and strongly to a weak
solution of (1.1) with shock discontinuities.

1.3, Plan of attack

The questions posed in the prior subscction ure clearly very hard.” Further,
there may be more than one answer, #s a definiion by negation of the
systems involved (noncompletely integrable... ) is far o broad and vague to

*In ather words, (i), (i), and (i) before are fgitly general hehavior. It is onty (iv) that is poouliar 1o
inlegrable systems.

“Thus to expect any prompt resolution of them seems unreasonable, A pood deal of modesty in
approaching hese guesiions seems appropride.
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guarantee a precise answer. As our knowledge and intvition concerning the
possible hehaviars that can be expected seems quite limiled, u pood lirsi
approach should (we review prior work by others on this in Scetion 1.4)

{x) begin the study with the simplest types of equations that seem (o
have the “desired” properties,

(xi) include a lot of carcful numerical studies, to explore and classify
possible {interesting) behaviors—while pushing our current analylical un-
derstanding as far as possible, in an “interactive”™ fashion.

Concerning (xi), we remark thal numerical experiments that are too far
removed from any theoretical basis of understanding can easily he meaning-
less, One lewrns best when it is possible 10 jump back and forth between
Ltheory and experiment, and we have tried to follow this method.

The simplest nonlinear dispersive svstems are probably those that reduce
10 the Hopf equation (1.1) when the zero dispersion limit is taken ™ naively.”
On the other hand, semidiserete systems arg easier to integrate numerically
than continuous ones, Thus it would seem that a good choice as fur as (x)
and (i) above should be some kind of dispersive discretization of the Hopl
cquation. OF the very many possible ones, the two simplest seem to be (1.2)
and!’

i+ (1~ 1ty ) = 0. (17)

But this second scheme is “completely integrable” (as explained later in
Section 1.4) and thus “too special.” On the other hand, (1.2} appears to be
nonintegrable, although we have no proof of it (this is a question we planto
study further in later work).

It would scem that semidiscrele systems should be easier to analyze than
continuous oncs, but this is not entircly true—perhaps the price to be paid
tor simpler numerics? For cxample;

{(xii) Even though—in principle—a general theory [or single-phase wave
modulation, similar to the one formulated in [5], should be possible for
semidiscrete systems, this is not so. The problem is that the notion of a
“perindic plane steady traveling wave™ ccases (0 have a ¢lear meaning for
these systems.”" For example, we have been unable 0 find any such waves
tor (1.2), except as small amplitude perturbation expansions.

(xiii) The solutions to problems such as (1.2) (1.3) have a swrong phase
dependence. Namely, if we write x, = oh (wilh 0 < o = 1 fixed as B —0), the

" Nate that ore-sided diffcrences vicld dissipative schemes and So are not an Gpiom,

" Except in the completely integrabic cases and other special cxamples {see [12] for w derivation and
study of gonerz] modulation equutions for semidiscrele nonlinear Schrodinger 1ype cquations).
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solutions for different values of o can differ strongly. We illustratc this with
numerical experiments and also provide analytical explanations.

{(xiv) Beoausc of their discreteness, systems like (1.2) may admit (in the
limit ki — 0) discontinuous behavior across certain values of x: ie. the
nature of the limit behavior changes abruptly at some point. This means (in
particulur) that shocks may be admissible in the solutions to the modulation
cquations. We note that this is less a product of the discreteness than of the
fact that the dispersion is nonlinear. Again, we illustrate this with both
numerical cxamples and theory,

Going now back to (1.2)-(1.3) and the analogy with (1.5) via (1.4): After
the breakdown time for the classical solution to (1.1). we expect the solution
of (1.2) 1o develop oscillations at the grid level—wavelength of order h—of
nonvanishing amplitude. Thus, after the breakdown time the solution can (at
best) be cxpected (o have a limit as /# — 0 only in the weak sense. Using hars
to denote weak limits

7 +{) =o. (1.8)

But, since (e?)= (@), (L8) is not enough to determine & The “peneral
problem™ we poscd before in Section 1.2 can now be restated (for the
particular case of (1.2) (1.3)) as: Find enough information about the solu-
tion and the limit & — 0, to “close™ (1.8). This entails finding which ather
paramclers, in addition to i@, control and completely determine the time
evolution of the weak limit—and then writing the evolution equations for
these paramelers, .

The analogy between (1.4) and (1.5) should not be pushed too far, as the
dispersion lerm in (1.4} is nonlinear—which can canse dramatic differences
in bechavior, For caample, the solutions of (1.5) are generally smooth, but
this is not so for (1.4)—see (xiv) above and [13]. The same can be said of the
relationship between (1.2) and (1.4). When oscillations with wavelength of
order b and finite umplitude develop in (1.2), it is no longer valid to neglect
in (1.4) the nght-hand side term.

1.4, Reluied prier work

Here we bricflly summarize related work by other researchers on semidis-
crete dispersive syslems, A complete and thorough review (by Lax et al.) can
be found in [3].

L por exumple, consider Equation {14}, with the righr-hand side scr fo zora. The resulting (dispor-
svel mee. admits solutions with stalionary “shocks,” where 6 i smooth across the dioun-
touity—but & changes sign.
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Only two (integrable) semidiscrete schemes have been carefully studicd
and they are essentially identical. One of them is the Toda lattice™ (sce [14,

13D

[ui—ui_l}, (1.9)

"

bl

a, = %ﬂﬂ[bﬁl —b) and b, =
or (altermatively)

g, +%{EXP[_%I_HPI_%” =0, (lL10)

where a, = Y expl-(1/2hXg, — q, Jand b, == }4, ,. The other, intro-
duced by Kac and van Moerbeke in [16], is

e 2
By + 3Pl Prsr—Pao) = 0. (1.11)

Their equivalence was shown by Moser in [17].

Holian ¢t al. [18] studied the Toda Lattice with step (shock) initial
conditions and discovered that period-two oscillations were generated. This
seems (o be o common [eature 1o all semidiscrete systems currently in the
literature.”* Venakides ct al. {19] analyzed the problem using the inverse
speetral transform machinery and reconfirmed the results in [18], in partico-
lur the generation of period-two oscillations.

Goodman and Lax® [20] studicd (1.7), with initial conditions as in {1.3),
very much in the same spiril we study here (1.2). However, (1.7) is also
integrable,' us for w, > 0 the transformation «, = p2 reduces it to (1.11).
Hou and Lax [22] studicd a dispersive discretization of the Fuler equations
of gas dynamics with mitial conditions as in (1.3). Finally, Levermore and
Liu [23] studicd the scheme (also a diseretization of (1.1))

ﬁ"'+%I-luﬂ'|+“*?+Hn-l]{”.u-l_un-1} =0 (1.12)

with initial conditions as in (1.3). All these studies show the formation of
(mostly) period-two oscillations right after the breakdown time for the Hopfl
equation (or gas dynamics for [22Z]). In [23] a breakdown by the period-two
modulation equations changing type to elliptic is also found.

Pwe intraduce here the parametar b, not present in the ariginal references, for the sake of
cunsistency with (1.2). Clearly this enly ammounts 1o a simple rescaling of i,

HMurrontly we ure studying a system for which this & not lrue, u period-three oscillations asise,

Y There is a factar of 2 difference hetween (1.7 and the scheme used in [21. We introduce this lime
scule chumge here so that {1.7) is consisienl with (1.1).

™10 fuce, Hayes [21] has recently studied this scheme and found a large dass of very interesting
relevant exaet solutions  althaugh he did nor use an inverse spectral transform approach for (s,
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The oscillatory nature of the solutions of dispersive difference schemes
was discovered by von Neumann in 1944—in a calculation of compressible
flows with shocks in one space dimension. using centered differences [24].
After shocks formed, oscillations on the mesh scale appeared. Von Neu-
mann suggested that the oscillations should be interpreted as heat energy
produced by the irreversible action of the shock wave and conjectured that
{as A—=0 and dr— () the solutions of the difference equations would
vonverge (weakly) to the exact (discontinuous) solution of the equations
governing the compressible fluid."”” The studies in [20), 22, 23] appear to have
been motivated, at least partly, by this conjecture. Their results show that
there is good reason to doubt the validity of von Neumann's conjecture.

Finally, we should mention here the pioneering work of Fermi et al, [25],
which (even though not directly concerned with the problems of interest
here) showed that very many interesting and unexpected behaviors can
vecur in ponlinear lattices. A continoum (completely integrable) system
whose small dispersion limit has also been studied is the nonlinear Schriidin-
gor equation; see [26, 27).

The scheme that we study here, (1.2), allows for a large variety of shocks
in the modulation equutions, & new and interesting feature that the schemes
studicd by other researchers do not permit. This allows for the occurmence of
some very mleresting behaviors, not observed betore, which will be reported
and unalyzed bere and in another publication in preparation.

1.5, Plan of the paper

In this article we emphasize the numerical aspects of what we have learned
so far about the behavior of the problem (1.2)-(1.3). We concentrate on the
more analytic aspecis of our study in a later publication, in particular on the
details of the shock conditions for the modulation equations and how they
depend on the phase x; in the initial conditions (see (1.3) and (xiii)).

The rest of the article is organized as follows: In Section 2 we present a
variational principle and conservation laws for the scheme. We introduce
the period-two solutions, study their stability, and show that they admit
“shocks.” An explanation of why period-two solutions should be so impor-
tant is given in terms of the potential needed in the Lagrangian formulation
of the equations.

In Section 3 the modulation equations for binary oscillations are derived.
Their charactenistic forms and Riemann invariants are displaved, together
with shock conditions for the shocks they allow. An exact analytical solution
is ubluined for the cuse of step initial data,

Y Fur w detailed historical sccouni of these (o, see [221
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In Scction 4 numerical experiments showing the generation of period-two
oscillations after the breakdown of the Hopt equation arc shown. Compar-
isoms wilh exact solutions of the modulation equations are also shown.
Finally, cxamples showing the blowup of the solutions (of the schemel once
the modulation equations cross into the elliptic region ure shown, A local
description of the blowup for the scheme (in terms of an cxaet solution } is
proposed.

In Section 5 the phase dependence of the solutions with binary oscilla-
tions is explored in several examples. Comparisons with exact salutions are
shown. The phase dependence of the shocks in the modulation equations 15
studicd (numerically) in some detail.

Finally, in Section 6, the production of oscillalory pulses by a shock
maving slowly through the grid is illustrated. This gives rise to oscillations
that are not hinary and for which we have nol been able to develop a precise
characterizatinn.

2. Yuriativnal principle, conservation laws, and period-two solutions

In this seetion we study some simple properties and solutions of the system
of Equations (1.2) and compare them with the analog propertics of the
schemes (1.7) and (1.12)—studicd, respectively, in [20, 23]. First we show
that the system has 4 Lagrangian and explore the connection with modula-
livn theory, as presented in [5]. We explain how the fact thut the porential
has two intcgration constants is related to the appearance ol period-twn
oscillations, Next we look at the conserved quantities and note that the
solutions Lo the system can develop singularities in a finite time, Finally, we
examine the period-two solutions, their stability properties, and the [act that
they admil “shocks.”

2.1. Variational forms

For simplicity™ consider now the scheme (1.2) on - =<n <=, with u,
vanishing (fast enough) as |n] — ot First we note that, if we introduce a
potentinl sequence (4, } to [u,) by

1
M, = Zh {{])lrl il LI}I'I L}‘ E2‘1j
then (1.2) follows from u carietional principle with Lagrangian

L= ‘i (%'if'ﬁu,, + %u:] (2.2}

¥ gimilar results are valid jo viber cascs. such as a porindic lattice, with ng.y — e — < n< =, fo
gsome V. The extensions are obvious and we do ool display Ueemn berc.,
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Thus (1.2) is a discrete analog of the kind of systems for which the Average
Lagrangian approach to modulation theory was developed by Whitham — see
[5]. Unfortunatcly, we have not been able to find expressions for gencral
plane stcady traveling wave solutions of (1.2}—nor do we even know if such
objects actually cxist in uny general sense for the scheme. Thus a pencral
and powerful theory as that in [5] is not available to us here—this is the
difficulty pointed out in (i) of Section 1.3, Thus the analog of (iii) in
Section 1.1 for problem (1.5) will not be complete for (1.2)-(1.3). In our
numerical experiments we have found instances where (after the breakdown
time for the Hopf cquation) vscillations appear, but we have no good theory
to model them; s¢e the last experiment in Section 6. We do not vel know
whether this is merely a technical difficulty or if something truly novel is
involved in the behavior of (1.2)- (1.3} relative to that of (1.3} (in the Timits
€, — (). We plan 1o investigale this matter in future work.

Remark 2.1: The potential sequence {d* } is determined by {u,} from (2.1)
up 1o twe arbitrary constants

D = o(n)+2h i”n-z;-z- (2.3)

-0

where cln)=a if n is even and ¢(n) = 8 if » is odd. This is rather unusual
behavior if one thinks in terms of potentials for p.d.e.'s, but rather natural
for discrete systems, It is one way 10 understand the ubiyuitous vccurrence
of period-two oscillations for centered diffcrence schemes as (1.2), as we
cxplain now: Recall that in Whitham’s Average Lagrangian theory [3)
whenever a potential appears in the Tagrangian [orm of the dispersive
sysiem, a corresponding “ pseudo-phase™ must be introduced into the Aver-
ape Lagrangian formulation. These arc, in lum, associated with varable
“mean levels” in the solution. In the case of the Korteweg-de Vries
cyualion, for example, it is the modulation of the mean level that gives the
Hopf cquation—as in (i) of Section (1.1). For (2.2), however, one should
introduce two pseudo-phases. When these two coincide, the Hopl cyuation
follows; otherwise period-two oscillations arise.'”” Onc may say that an extra
slcp between (i) and (i) in Section 1.1 appcars for systems like (1.2).
Anyway, at this stage, this is all very speculative and much work remains o
be done.

¥ Nute that the constants in (23} arc different for # 0dd or even. We elaborate more on this on
Remark 3.0,
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Remark 2.2: Tntroduce the skew-adjoint operator un sequences J, defined
for any u ={u,} by

{.J“]n = _%{.uu+l_nn—l}1 e {2'4)

Then (1.2) has the generalized Hamiltonian form

1

a=Jgrad I, H=zYu, (2.5)

]

with Hamiltonian H. A classical Hamiltonian form follows il we note that @,
in (2.1) can be chosen so that
& = —u2, (2.6)

upon integration in (1.2). Thus, with ¢,=u, and p,=®,. the scheme is

a
equivalent to the classical Hamiltonian system with Hamiltonian

- l 1 5
H = j}:{tjﬂ b (Paia = Pa 1}1}- (2.7)
provided that the initial conditions arc such that q, ={1,/28Xp, ., —p, )

This condition is then preserved by the Qow.

Remark 2.3- The scheme (1.7), studied by Guodman and Lax in [20], also
has a Lagrangian—at least for positive solutions, For cxample, let o, =
exple,). Then (1.7) reduces to

. 8 ;
e )i (2.8)

Introducing the potential ¢, =(1/2hN®, ., — B, _,), this has the Lagrangian

Lo
L= L (79 +2¢%), (29)
where again two arbitrary constants appear in the potential.™ Another
Lagrangiun is provided by the cquivalence of the equations with the system

(1.10)

B, 1 ' "l‘a+ ffu
L= ¥[34 e (- L5 2) . (2.10)

“ written in the form (2.4}, it is clear that this scheme also has a generalived Tamilionian form, as
in (2,43=—(2.5) but with H = 2L o=
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Given that this scheme is completely integrable, it should be possible to
produce a theory for the A—0 limit that does not differ too much—
qualitatively—from that for the Ronteweg -de Vries equation, as described
in (i)=(iv} of Section 1.1.

Remark 2.4: We searched for a variational principle that would apply to
the scheme (1.12), studied by Tevermore und Lin [23] and were not
successful —although our search was not thorough. It would be interesting
1o know if there is one and if it also involves a potential depending on twe
arbilrary constants.

2.2, Conservation lgws

We have been able o find only two conservation Taws for the scheme (1,2),
namely, conscrvation of “mass” and the Tamiltonian in {2.5)

M=) u and = J;Euf:. (2.11)

In fact, M, =Yu,, and M, =Yu,  , arc conserved separately.

None of these conserved quantitics is enough Lo bound the growth of .,

und in fuct the solutions of (1.2) may blow up in 4 finite time, We contrast
this behavior with that of the schemes studicd previously. The scheme (1.12)
conserves £ = 1T 12 in addition to M. and this bounds the growth of the
solutions. On the other hand, the scheme (L7 keeps u, >0 for all n's Gl
this it true initially);” thus the conservation of M provides a bound vn the
growth of the solutions. By contrast, this “positivity” property is not true for
(L2)—as Example 2.1 below shows—and thus the conscrvalion of M
pruvides no bound,

ExamrLe 2.1, Consider (1.2) with initial conditions: u (0) = 2 for n >0,
u{0) =1 for n <0, and uy(0) =&, where (1< & = 1. Then ay(0) = —3/2h
and it is clear thal #, must cross zero rather guickly. Furthermore, 2 (1} =
1/h, which causes u_,(0) to start growing (rapidly). This, in mrn, causes
u_,(0) 10 decrcase  und so on. Thus, period-two oscillations appear for
n=0. For n>0 the same type of argument shows that all the u,'s start
decreasing and no oscillations arise. We do not analyze the evolution of this
solution Tor longer limes. ‘This exumple should give an intuitive idea of the
mechanism that produces period-lwo oscillations in the solutions of (1.2}

A smmple prool can be done using that if w, > (0 initizlly, then wc can sobve (2.8) with initial
conditions e 0= Ina 0L Sinee then s, = expia, ), dewrdy g, = 0 Toe gl tmes (see [20]).
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In our numerical experiments we observed many instances of a solution
blowing up in finite time. These were almost always associated with the
appearance of regions of period-two oscillations where the “same sign™
condition on w, was violated, producing growth in the amplitude of the
oscillations in a very localized region of space, followed by a finile time
localized blowup (sce Section 4.3),

2.3, Period two solutions — Stability

A very simple exact solution of the Equations (1.2)* is that given by
t,, =aand 1, ., = b for—e < n < x (2.12)

where @ and b arc arbitrary constants (in purticular, a = b yields the trivial
solution 1, = const.). A linearized stability analysis of this solution yiclds

AE + I%{Hﬂ_, —B_,1=10 and B4 ;:—{An.,.|—fi,,_1} =1,

(2.13)
where 1, =a + A, for n even and u, = b+ 8, tor n odd. Thus, if we write
A, =a(t)r™ and 8B, = B1)r", (2.14)

where r = ¢'*, we obtain
. L7 A AT - o &
a4 ZIF{mn k)B = B 1 2ip(sink)a = 0. (2.15)

We conclude thal

1. the solution (2.12) is lincarly stable (respectively unstahle) for ab =0
(respectively ab < 0) and

2. when ab=1, bur a* + b* > 0, then either « of B in (2.15) will grow
lincarly in time.

The instability when ab <0 is rclated to the fact thal the period-two
modulation cquations hecome clliplic; see Section 3.2, Our numerical exper-
imcnts show that, once the instability is triggered, it cauvses hlowup of the
solution in a finite time. A similar phenomenon (of instability of the
period-two oscillations and cllipticity in the modulation equations) oveurs
for the system (1.12), except that there no blowup can occur as £ = 1Tu: is

# Alsgy, of (1.7} and (1120,
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conserved, The numerical cxperiments in [23] show rather complicated
behavior in the breakdown region. Finally, because (1.7) preserves the
positivity of the solutions, this type of instability appears irrelevant, as no
evolution from the hyperbolic o the elliptic regime (in the period-two
modulation equations) is possible.

24 Period two solutions — Shocks

It is rather imteresting to obscrve that we can switch the sign in (2.12) at any
arbitrary place (for any ¢ and b) and u, will remain a solution of (1.2).
Namely, we cun take w, given by (2.12) for # < ny—some iy —and by (2.12)
with (a, b) replaced by (-a, —b) for n>n,. The existence of these
solutions with switches translates into the period-two modulation equations
accepting sicady-state shocks with the appropriate jump conditions. This is
rather unusual behavior for modulation equations.

Remark 2.5 In contrast, we notc that the schemes (1,7) and (1.12) admit
solutions with sign switches as abovc only if either @ or b vanish, with
u, =0 (where ny, is the switchover point, as ahove). Because of this
difference, the problem (1.2)-(1.3) exhibils interesting behaviors (reluted 1o
shocks in the weak limit) that arc not present in the other schemes. We
illnstrate this in what follows.

3. The modulativn equations for binary oscillations

In this section we derive the modulalion equations for binary oscilla-
tions—which include the Hopf equation as a special subcase—and start
their analysis. We study where these equations are hyperbolic and clliptic
and find their Ricmann invariant form in the hyperbolic case. Finally we
consider steady-stale shocks for the cquations. We show that the
Raunkine—TTugoniol jump conditions arc not ¢nough to determine the solu-
tion and introduce an cxtra equation to close the system. An exact analytical
solution is then provided [or the case of step initial data.

A1 Asymptetic expansion

We note that the scheme (1.2) can be split into owo “sub-schemes.”
Namely—compare this with (2.12)—introduce (A,} and (B,}, defined only
for n even and odd, respectively, by

u, = A, for nt even and i, = B, for nodd. (3.1}
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Then we have the equations

. 7 7 ' 1
An+-21E{B;+.—B;_.] =0 and B, +3p(Ai.—4i) =0
(32)

We now propose an asymplolic cxpansion for solutions of these equations,
valid as 4 — (), of the form

AH(I} o E hmaml_xﬂ"r} H'"d Hn{ r} i) E hmbm’(x:ﬂr}T {.3'3
m=1I

m=1

where the x,’s are defined in (1.3) and the a, = a,(x.¢) and b, = b (x.1)
are smaoth functions of x and (. In particular, we consider the casc
a, = b, =U,(x,¢), which is consistent with the initial conditions (1.3). Sub-
stituting into (3.2) (expanding in Taylor series around x, any function

evaluated at x, ) and collceling powers of b we obtain (at leading order)

a,+(b), =0 and b +(a¥), =0, (34)

where we have not written the subscript 0. In the particular case when
u = b =], this reduces to the Hopf equation

U + (U, = 0. (35)

To this we must atlach appropriate boundary conditions and the initial
conditions

U(x,0) = a(x.0) = b(x,0) = f(x), (3.6)

as follows from (1.3), (3.1), and (3.3).

Remark 3.1: If we usc the variational approach to modulation. as in [5],
we must split the potential @, in (2.1) into two parts—as (2.3) shows we
should—

L, =% lornodd and £, = &, for n cven. (37)

Approximating then ¢ and £ in (he same [ashion as (3.3}, then from (2.1} we
obrain—at leading order—

a={£, and b= ¢, (3.8
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It follows then casily, [rom (2.2), that the appropriate Average Lagrangian is

—

= %(ﬂ?+{fﬂ}+ §~{a3+b:"}. (3.9)

where (3.8) should be used for ¢ and & when calculating the variational
cguatjons, This, again, yields (3.4}

Remark 3.2: Given (3.4), the fact that o and b are cqual initially—as in
(3.6) —and that they satisfy the samc boundary conditions (at least as far as
it concerns the type of problems considered here), one may wonder how it
cver develops that a# b, We see later (in Scetion 3.3) that this ocours
because of conditions at the shocks—which happen o be strongly phase
dependenlt. This is rather different from the situation for the problem in
(1.5). In (1.5} (see (ii) and (i) of Scction L.1), as oscillations develop after
the breakdown of the Hopf equation approximalion, an cxpansion fan
appears in the one-phase modulation cquations®™ —and no crossing of
characlenistics or shocks occur. Thus we se¢ again, rom a different but
related point of view to that in Remark 2.1, that the occurrence of binury
oscillations is intimately tied up to the discretencss of the system und thul it
is {probably) qualitatively distinct from the oscillations deseribed in (i) and
(iii) of Section 1.1.

3.2 Characteristics, imvariants and change of type
Tt is casy Lo sce that the characteristic speeds for (3.4) arc given by A, —
4 b . Thus Lthe svstem is

hyperbolic in the region ab =10,

3
elliptic in the region ab < 0. (3-10)

In particular, in the hyperbolic region ab >0, (3.4) can be written in the
Riemann Tnvariani form,

g;ﬂ =1 along E{[x = A and %S = {0 along 5;-1 = — vk,

(3.11)

where v = 1 =sign(a) =sign(h), R—=lal"" ¢ |b]"", § = la|" = 18]"" and A=
2ab = 0.

In our numerical experiments with solutions of (1.2) we often obscrved
maodulated binary oscillations in the hyperbolic regime that ¢ventually
cvolved into the clliptic regime in a small region somewhere in space. When

“This mechanism wus discovered in [11]
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this happens the period-lwo oscillations become unstable—see Scelion 2.3
—and, typically, cxplosive growth occurs allerward (with a very localized
infinity developing in a finite time), as we illustrate in Section 4.3. This
behavior is rather different from that reported for (1.12) in [23] afier an
elliptic breakdown vccurs, while (1.7) never crusses into the elliptic region if
the initial data arc positive.

3.3 Steady-state shocks

From Scclion 2.4, it is clear that it is admissible to introduce into the
solutions of (3.4} sicady-state shocks. That is, we can have a discontinuity in
the solution at some fiked x=x,. Then, il @, and b, denote the values of
the solution immediately ahead {(+) and behind (=) of x_, the conditions

a,=—da_ and P (3.12)

must be satisfied.™ Tf we interprel (3.4) as a pair of hyperbolic conservation
laws, then (3.12) are preciscly lhe appropriate Runkine -Hugoniot jump
conditions for a stationary shock. This interpretation is consistent with the
fact that the scheme (1.2) conserves both M, = Lu., and M, = Lu,, ., a5
follows casily from {3.1) and (3.2) and pointed out in (2.11).

Remark 3.3- As follows from Remurk 2.3, for the schemes (1.7} and (1.12),
{3.12) should be augmented by a. =0 or b =10

Remark 3.4: 1 is important t note the inleresting fact that (3.12) is not
¢nough to determine the solution,® and one cxtra condition is needed. The
numerical examples later will make this need abundantly clear but, to
illustrate the poinl, consider the following:

Exameir 3.1, Find the solution to the system of equations (3.4) for >0
on - =< x < () with initial and boundary conditions

a(x 0y =b(x0) =1 and  H(U;) — ea(d,r), (3.13)

where 0 < @ < 1. We note that the case « > 1 ean be reduced to this one by
cxchanging the roles of a and b

This problem is easy Lo solve, exactly, using (3.11). We note that R=2
and so we have a simple wace in S, that then satisfics the single cquation

S,—AS, =0, A- 2( =

_payls3
4-—5] (3.14)

M Mute thal &, ho=da_k_, w nuchupge of iype nceurs,
= In particular, the Lax “entropy”™ condition [28] & nor sutisfied. This condition would reyquire here
anly anc churucteristic keaving The shock instead of (we.
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wilh
1— 't
S(x.) = 0and §(0.1 =2[ v
(5,0) = 0ana 5(0.1) = 2 74|
Thus
$=0 forxs -2
s ]/ x
=2 1+ — for - 21 = - — ol a)r
8t mgEa) (3.15)
; - LS
= (T:Ej] for I‘l:ﬂ:l.i ::.r{.:ﬂ,_
where
4:!1.5 /3
ne)=2{————=| -
(1+ ')

The second formula follows from un expansion fan starting at the origin that
viclds A= —x /r. Thus we arrive at the following solution for Example 3.1,
written in terms of a and &:

a=hH=1 forx = -2t

a= (1+v’1+(%]1 ]mand b — (l_v-m)m

for -2t < x < —w(a)t

2 273 zﬂ"lj 273
d=(l+F) Hndb:[]{-ﬂ'lj] fnr—f.‘(rx}fﬂ.rﬁﬂ.

(3.16)

Now, take these functions ¢ and b and extend them to the whole line
—w< x <=, a5 odd functions. Then they solve (3.4) on —=< x <= and
t > (0 with initial conditions

a=b=1(forx<0), a=h=—1(forx>0) (3.17)

and a shock at x =10 satisfying (3.12). Bul @ can be taken arbitrary! This
illustiratcs the point made in Remark 3.4 above. Wo note that the same
arguments above would app]y’“ to any odd initial condition in —= <y <=
for alx,00=5(x,0) that breaks and forms a sicady shock at x =0 (e,
~tahn x).

» ;
Except, of cuurse, for the ahility to produge an exact selutivn.
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Remark 3.5: In the example above note that the oscillations generated at
the shock (difference between a and b) go from a maximum for « =0 1o
none for e=1. When a =0, v{a) =0 and the oscillations decrease, as x
decreases, from a muximum amplitude a1 x = 0 (where a=2%" and b=10)
to none along x=—2¢f (wherc a=b=1). When a=1, =2 and a=b=1
everywhere, i.c., (3.5) applics. Of these solutions, the only one that has an
analog in the modulation equations for binary oscillations in the schemes
(1.7) and (1.12) is the one for « = 0; see Remark 33.

Rermark 3.6; From the considerations abowve, it follows that (3.12) must be
augmented by one extra condition. In this article we use the ud hoc
condition (as in (3.13))

b= aa,, (3.18)

where 0 < o =1 is given. In the numerical experiments where binary oscilla-
tions with a stationary shock appear (see Scction 5) we can measure . If
then this measured « is nsed to integrate (3.4}, (3.12), and (3.18). we find
that the modulation equations reproduce the behavior of the solution of the
scheme (1.2) as A — () very well. We see that o in (3.18) depends, for a given
fixed initial condition f(x) in (L.3). on x,. Typically, as x, ranges over an
interval of width h (e.g, 3, =ch0 <o <1), @ moves over the whole of
0 <wa<1. This, of course, means thul the behavior of the solution of
(1.2)—(1.3) changes dramatically with small phase shifts x;.

In this article, we do not justify (3.18)—cxcept for the cases when o =0
or @ = 1, where simple symmetry arguments can be used (see Section 4.1). A
detailed theoretical analysis will be presented in a Jater publication. It furns
out that (3.18) is a gross simplification ©f the aclual conditions, which are
quite subtle and interesting as they require the solution of “second-order”
quantities in the approximation (3.3).

4. Some numerical experiments

Tn this section we consider various initial data for the problem (1.2}-+1.3)
and integrate the equations numerically, The aim is to investigate what
happens with the solution of the dispersive system (1.2)-(1.3) after the
corresponding solution of the “long wave™ approximation” {1.1)—the Hopf
equation—hreaks down.

We solve the system of Equations (1.2} using a code based on variable
order, variable step Adum's methods, The code is completely documented
and explained in [29]. (Wc cxpress our gratitude to L. N. Trefethen, who
made a version of the code available 10 us.)

e call this approximation “leng wave™ because it upplies when w, depends very slowly on m, i in
B3 witha, =b_ =L,
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We computed approximate weak limits (as A— () from the numerical
solutivns by taking averages over adjacent spatial points with the formula

e ] 1 alt M| : 1
i, = 335 | 54, uF E Bpv 5l am | (4.1)
= f—m—M+1 ]

where 1 =M =1/h, for cxample, M =1/ Vi . This same formula. with
M =1, was uscd 10 remove the period-two “component”™ from the solutions.
When the solution is a modulated binary oscillation, M =1 should give the
same resull as M = O(1/vh ).

The rest of this scction is organized into the following subsections: In
Section 4.1 we present experiments with sinusoidal initial conditions, which
hreak at time tg = 1 /47 (as solutions of the Hopf equation} and produce a
stationary shock at x = 0.5. Two cascs arc shown: If x =0.5 is a node x,
then oscillations oceur for ¢ > #;; if x=05 is a halfnode x,,, ;, then no
oscillations are generated. We explain this behavior and derive supplemen-
tary shock conditions of the form (3.18), with a =0, 1, = for the initial data
considered. This derivation depends only on the Faet that the initial data are
odd about the breaking point x — 0.5, In Scction 4.2 we compare the Tesults
of Section 4.1 with exact solutions of the modulylion cyuations for step und
cubic roat initial data—which have the same oddoess property about the
breaking point as the sine. We also discuss the occurrence of instabilitics
and finite time blowups in the solutions of (1.2} when the corresponding
solutions of the modulation equations (3.4) satisly the condition ab>0 in
(3.10)), except at some point where ab and its derivative vanish. Finally, in
Section 4.3 we present (wo numerical cxperiments cxhibiting blowup as (he
maodulation equations cross the elliptic bovndary. A local asvmptotic descrip-
tion af the blowip is showe.

4.1. The emervence of period-two osciflations
Here we consider solutions of (1.2) with periodic boundary conditions
= Hy, (4.2)
for some large M. For the initial data wo lake
i, () = sin (27x, ), x, = ph, (4.3)

where fi=1/N (note then that, in (1.3), x, = 0).

Clearly, we need to integrate only for 1 =n < N, und we can restrict our
attention to the interval 0 = x < 1. We note the solution (o the comespond-
ing problem for the Hopf equation (1.1) is smooth for 0 <7 <1/(4w)=1,
and develops a stationary shock at x = 0.5 for ¢ > 1, = 0.756.
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We show here the results of two caleulations. One in Figure 1 with
N = 1000 and the other in Figure 2 with N = 1001. The results are strikingly
different, In Figure 1 we see period-two oscillations™ arising at x = 0.5 at
lime ¢ =, and [anning oul in both dircctions—to fill a region of width
Ax=0(r —1,), ceniered at x =035, A shock, in the sense of Sections 2.4
and 3.3 is clearly visible at x = 0.5. In contrast, no oscillations develop in
Figure 2, and the solution corresponds to that of (1.1), even after # = r;, with
a steady shock in @ at x =03, The behavior in Figure 1h is addressed in
Remark 4.4,

Note: Actually, two small bursts of oscillation (easily scen in the figures,
as they move away from x = (.5 on each side) are generaled roughly at the
time the shock forms in Figure 2. These bursts, however, vanish as & = ). As
far as we can tell from our numerical experiments (carricd for the values of
No= 1001, 2001, 4001, and BOOT), if a, denotes the amplilude of these bursts
then h << a, <1 as A vanishes.

These two ditferent behaviors are actually quite casy Lo understand in
terms of the theory developed in Scction 3. In the st case N = 2M is even
and x,, = 0.5 is a node on the grid. Clearly then we must have wy = —uy,
for the solution of (1.2) with initial conditions as m (4.3). Tn pﬂru-::ular
iy =10 and uy,_,=-—uy,. . This is consistent with the modulation equa-
tions (3.4) with a shock at x=0.5 satisfying (3.12) and the additional
condition®™

a,=4.=0, (4.4)

That is, {3.18) applies with a == (equivalent to « =0 by cxchanging the
roles of @ and b). In terms of R and § [see (3.11)), this translaies into

R==8§ atx=035 (4.5)

Then, for0=r=<fy,onc has R=S=0=5b,—b_at x=10.5 and no oscilla-
tioms arise. For ¢ > t,, churacieristics that bring R > 0 arrive at x ={.5. Then
b_=—b_>0 occurs there and oscillations develop. These are then carried
away from x =05 by §—note that binary oscillations occur if and only if
5 = 0. The position of the Icading characteristics (starting at x =05, t =1,
and moving away Lo cach side of x = (L5) carrying the front of the oscillatory
region S = 0 is very clear and sharply defined in the numerical calculations

™ Beeanse of the large number of points used it is impossible to distinguish individual oseillations in
mest of the figures (hur, see Fignre 1), A direct inspeetion of the numericul oulpual, however, shows
this to be clearly the case—wilh. typically, @, ,;— .= Ok), Ooe crvclope in the figures come-
sponds then o u, for # even and the other 1w, for nodd,

* Note that in our calculations M & even, 50 that u,, carrcpands o g by (3.1) wnd (3.3). Fur M odd,
we must replace & by b in (440

Wy do not use the subscripts 4/ — for B und § at the shock because thom their definition in
(331) and the condition (3,128 they are borh sontinuons there.
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shown in Figure 1. The proeess is nol very dilferent from that illustrated by
the exact solution in Example 3.1, except that there the shock starts at 1 =10
with finite strength (R=2 at the shock position} while here R grows
gradually (for ¢ > 1,) slarting from R = 0. We claborale more on this in the
next subsection,

Tn contrast, in the second case (Figure 2), N=2M + 1 is odd and x =03
is exactly halfway between xy, and xy. .. The solution of (1.2)4.3) then
has the symmetry wy,_; = ~ g, ;.. From this it follows immediately that
the condition supplementing (3.12) musl now be

d4.= —h_ and u.=-b,. (4.6)

+
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Figure 2. Solution of the scherne (1.2) with perivdic boundary conditions and initial condi-
tioms w0, (0 = sm(2wa, ) where 0 s x, = mh <1, k=1 /& and &= I (a-d) u, is shown for
& = 0L0Ra), 0090, 0.14(e), and (L16(d). Small {of amplimde a,, say) bursts of oscillations ars

generated when the shock forms. Their amplitudes vamish as & » 0, bul showly: Various
numerical calenlations suppcst k<= g, =1,

Thus a, =b, =—a_=—b_, ic, a=1 in (3,18), Obviously, no oscillations
develop and the solution of the modulation cquations (3.4) will have a=h =
U, with a stationary shock at x = (1.5, as observed,

4.2, Comparisons with exact solutions

Here we compare the behavior occurring in the experiment of Figure 1 with
some cxact solutions of the binary modulation equations (3.4), with a shock

satisfying (3.12) and (3.18) for @ = (. First, in Figure 3, we show a plot of the
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solution of Example 3.1 for the casc when o =0 in (3.13)  using (3.1) and
(3.3) to recover «, for i = 0.001 and ¢ = 0.1. Note thal, since it is a similarily
solution, one plot is enough.

Remark 4.1; The most noticeable difference between the figures is in the
hehavior, at the shock, of the derivatives of ¢ and b. In Figure 3 they vanish,
while in Tigure 1 they do nol. This has 1o do with the fact that in one case
the shock builds up strength slowly, starting [rom zero, and in the other case
it does not.

Remark 4.2: The faet that in Figure 3 {exact solution of Example 3.1 for
o =0) a and b have vanishing derivatives at the shock —with one of them
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Figere 3, Tt solufion of the moedulation equations with symmeltric (odd) dep initin] values,
as i Faample 31 for @ =0, Using the symplotic expansion in Section 301, 1, has been
recanstructed for fs (L1, &, = gh, and & = (001, Tlere the function o is the envelope having a
jump at x= U while the function & is the other envelope, vanishing at x =L

vamishing also—means that the solution remains very close w the clliptic
boundary ab =0 (see (3.10)) in some interval near the shock. This has
scrious implications conceming the applicability of this solulion as a descrip-
tion of a corresponding solution for the scheme (1.2). For cxample, consider
the initial data

u 0) = lforn <0  uy(0) =0, 1w (0)=—1forn>0. (4.7)

Then, as in the analysis before the solution of (4.3) with N cven, symmetry
arguments show thal w, = — u_, should apply for all times, Thus a shock in
the modulation cquations (3.4) is predicied at x =0, satisfying (3.12) and
(4.4). So, we should obtain the solution in Figure 3. However, the modula-
tion cquations (3.4) describe the behavior of (1.2) only in the limit & — 0.
For any finite &, however small, discretization errors occur—sce (3.3). Tt
appears that these are enough to push the solution of (1.2)-4.7) into the
unstable, cliptic, repime and then bBowwp in a finite ime ocenrs. More
details are given in Scetion 4.3 and Figure 5, where we show Lhe results of a
numerical calculation with the initial data (4.7).

Remark 4.3: If in (4.7) we take cither u,(0)=1 or u,(0} = =I; then the
initial conditions are an exact steady solution of the equations. This is, in
fact, Example 3.1 with o =1 in (3.13). Locally (ncar the shock) this corre-
sponds with the sitvation in Figure 2.
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To avoid the problem described above in Remark 4.2, consider now the
initial conditions™

0,(0) = =y, —035, (4.8)

that would lead to a sicady-statc shock al x =035 in the solution of
(1.1)—starting from zero strength at time /= 0. We assume that x=05isa
node—i.e., x,, = 0.5 for some M,

By the same arguments used before, these initial conditions correspond to
alx,0)=b{x,0)=—(x 05 in (3.4), with shock conditions at x =03
given by (3.12) and (3.18) with e = 0. It turns out that this problem can be
solved using similarity variables—the details will be shown in a later
publication. Tn Figure 4 we show a comparison between the solution of the
scheme (1.2) with the initial conditions (4.8) and the prediction of modula-
tion theory; the agreement is remarkably good.

Remark 4.4 Regarding Remarks 4.1 und 4.2 and the possible blowup of
the solutions of the scheme (1.2) (when the solutions of the associated
modulation equations (3.4) get “too close™ to the clliptic boundary ab = 0),
in the solution with initial conditions (4.3), N even as in Figure 1: as time
advances the derivatives of @ and b at the shock decrease in absolute value.
Eventually they get 1o be (o0 small and the instability is triggered. We can
sce Lhis starting (o oceur in Figure 1g, for ¢ = 0.16. In Figure 1h, for ¢ = 0,17,
the solution of (1.2) can no longer be described by binary oscillations near
x = 0.5, Soon thereafler the solution blows up near the shock al x =0.5. The
nature of this blowup 13 cxactly the same as thal scen in the experiments
shown in Secetion 4.3.

4.3. The loss of hyperbolicity in binary oscillations

Here we illustrate, with Iwo numerical cxperiments, what happens when a
period-two oscillation cvolves into the clliptic region in (3.10) at some
location. Tn the first experiment we use data corresponding to (4.7) in
Remark 4.2, Namely, for some large N=2M even, we take A=1,/N,0<
., =nh=1, and

u () =1forl =n< M, uy =0, wu,=-—=1forM <n<N,
(4.9)

otz that { - £ is the typical leading-order approximation ncar the bresk point for solutions of
(1,10 an tbe wme of breaking,
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#,(0)==3fx, 05,5, =nk and 4 =100 Thc drawn envelope is the correspomding exact

solution of the modulation cquations (3.4}, with shock conditions given by (3.12) and (3.18) for
o =1,

We use the boundary conditions uy; =1= —uy. The results, for & =1000,
appear in Figure 5. Initially period-two oscillations appear near x = 0.5 and
fan out from this point in both directions as time incrcases. This is pretty
much as the solution of Example 3.1 for & = () would predict. Soon, however,
the oscillation closest to x = 0.5 crosses into the elliptic region ab <0, as
explained in Remark 4.2. Explosive growth begins then there, and sometime
around ¢ = 0.016 and infinity seems to occur. Within the breakdown region
(which is fairly narrow in space) the solution approaches a clear self-similar
structure (see (4.11)), as scen in Figures 5g and 5Sh.
For a second experiment in Figure 6, we replace (4.9) by

u(0) =1-2x,, 1=<n<N, (4.10)

and keep everything else unchanged. In this case the Hopf equation should
apply for 0 =< ¢ < 0.25, with a finite strength shock forming at ¢ = 0.25. Aftet
that the solution of Example 3.1 for a = 0 should apply (same as in the first
experiment). The first part of this prediction holds true fairly well. However,
after the shock forms at r=0.25, the process described for the first expen-
ment vccurs faster, in about half the time as before—by (=10.258 the
blowup is clear.

Remark 4.5: Why should the blowup occur faster in this sccond experi-
ment? We offer the following explanation: The solution for the Hopf
equation in this case (0 < t < 0.25) includes corners. As long as these corners
are not too stecp, (1.2) has no problem in approximating them. As the
breakdown time approaches, however, the corners become very sharp. Close
to these sharp corners then crrors develop (one can see small “spikes”
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[orming near the corners as ¢ approaches (.25, in Figure 6h). These errors
then rigger the elliptic instability carlicr than in the case of the initial
conditions (4.9).

Finally, the details of the blowup, show i Figures Sg, 5h, and 6f suggest
the following

Conjecture 4.1: Blowups in the scheme (1.2) are localized in space and
self-similar in time. Tf the blowup oceurs near™ n =), then as the time of

2 nore that the equativns are “iranslutionally invariane™ thus there is o loss of peoerality here.
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singularity 1, is approached () <t, — ¢ < 1) the solution near™ 2 =0 can be
described by the following exact solution of (1.2),

hip=n
u, ”f[f‘—f} forn = 2,

Bip—1
iy = -T(L.__g b

# Whire “nesr” pppeurs o menn —6 £ 8= 6
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(4.11)

0,
_h(p-1
== Z[I‘—r]’

un=—g(ff_?] forn = =2,

where = 4+2v2 = 6.83, A straightforward calculation shows that this is a
solution. The valuc of w, which is uniquely determined for a solution of the
form above, is the one that gives the narmow range of the blowup (which
must occur between the zeros, al + w, of the solution).
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8. Phase dependence in binary oscillations

In this section we investigate in some detail the strong phase dependence the
solutions of the problem (1.2)-{1.3) can have in the limit A— 0. From a
theoretical point of view this dependence is related to the fact that the
leading-order modulation equations for hinary oscillations leave a ~parame-
ter” undetermined (sce Remarks 3.4 and 3.6), which must therefore be
sensilive 1o higher-order corrections: ™ Note that in (1.3) we can expand f in

**In fact, in = Iater publication, we show Lhat the additional conditicn needed 1o complene (3.12)
involves a coupling with second-arder quantitics,
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Taylor serics around x, for some fixed choice of x,;; then small
variations— O(h)—in x, appear as higher-order perturbations to the initial
data.

This section is organized as follows: In Section 5.1 we study the phase
dependence for sinusoidal initial data and in Section 5.2 we look at initial
data for (1.2) that reproduce the exacl solution of the modulation equations
given in Example 3.1.

5 1. Envelopes with bellies

[Tere we illustrate the behavior of the scheme (1.2) for sinusoidal initial
conditions as the grid undergocs fractional shifts, This will generalize the
results in Section 4.1, where, essentially, half grid shifts were implemented
by taking N even or odd.

For h=1/N,1<sn=N,0<x, =nh<], and periodic boundary condi-
tions as in (4.2), we consider now the imitial conditions

u,(0) = sin(2w(x, — ah)), (5.1)

where 00 < o <1 i5 a constant. For arbitrary o, the symmetrics of the initial
data relative to the grid that existed in Section 4.1—and that we used 1o
derive the conditions (4.4) and (4.6)—arc now missing® We take N=2M
even, 50 that x,, =0.3. Then the cases studicd in Scetion 4.1 correspond o
a=0(N even) and & =0.5 (N odd).

Remark 5.1: The transformation n =14+ N—n,u, » —u ,and r 21— ¢
keeps the system (1.2), with initial conditions (5.1), unchanged. Thus, without
loss of generality, we muy assume 0 < o =1 /2,

The resulis of these expeniments for o =10.1, 0.2, 0.3, and 0.4, & = 2000
and ¢ =0.16 arc shown in Figure 7. The evolution of the solutions prior to
the displayed time is as follows: For 0 <t <1, the Hopf equation provides a
good description. At t=¢, and afterward, binary oscillations originate™
near x = 0.5 and fan out in both directions from this point. The amplitude of
the oscillations generated, however, depends strongly en o.

If we model the condition at the shock in the binary oscillations present
at x=0.35 by (3.12) and (3.18), then a = ale¢). From the symmetry argu-
ments in Section 4.1 we know that «(0)=0 (will produce the maximum
amplitude oscillations) and @{0.5) =1 (no oscillations). For other values of o

3 The Incation of the statianary shock generated by (5.1) in the Hopf COpUAtioN i5 now 4t = 0,54 b
The breakdown time iz sull (p=1/4w.
* Excepl, for o = 1.5, when the Hopl equstion describes the solution for all fimes,
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Figure 7. Solutions of the scheme (1.2) with periodic boundary conditions and initial data
wpy=sin{2w{x, — wk)), where D s x, = rh 21, h=1/N, N=2000, and « 5 a constant. u,

is displayed for =016 and {a}o = 0.1, (bl =0.2, {chr =03, and (d}er = 0.4, The cdges of
the shaded region represent the values of u, for n even and odd (respoctively),

we measured a from our numerical cxperiments and found the values:

a(0.1) = 0.14,  a(0.2) = 031,
(5.2}

a(0.3) = 046,  a(04) = 0.71,

Of course, (3.18) is only exactly valid for & = 0 and o = 0.5. For other values
of o the correct condition iy subtler and will be studied in a later publica-
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tion. Nevertheless, the ad hoc condition (3.18) has the correct qualitative
propertics, and if wsed to numerically integrate the modulation cquations
(with the values in (5.2)) it produces results that agree with those shown in
Figure 7.

Remark 5.2: We note that, in scveral of the graphs in Figure 7 the
covelope closer to the x axis has a “belly.” As lime advances the belly grows
and eventually reaches the x axis. Al the point of contact, the hyperbolicity
condition ab >0 (see (3.10)) ccascs (o apply, the periodtwo solutions
become unstable, and exactly the same Lype of blowup described in Section
4.3 is iriggered.
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5.2. Comparisons with exact solutions

In view of the results of Section 5.1, it would be interesting to design initial
conditions for the scheme (1.2) thal yicld solutions that can be comparcd
with the exact ones found in Example 3.1 [or values of @ not O or 1. This
turns out to be fairly easy: Consider a shifted version of the sccond
experiment in Section 4.3. Namcly, lake

1 forx, =05—p+oh,
w,(0) = { ~(1/p)(x—05—och) forl|x,—05-chl<p, (53)
= forx.=054+p+ah,

where 0 < p<0S5isaconstant, | sn <N, h=1/N, x, = nh, N islarge and
cven,” and « is the shift parameter, 0 = o < (0.5, The boundary conditions
tty = 1= —u,, should be nsed. Just as in Section 5.1, for 0 < o <0.5, therc
are no symmetries in the mesh relative to the initial data. Thus we expect
values of « other than () or 1 to occur,

The solution of the Hopf equation corresponding to the data (5.3) breuks
and forms a steady state of finite constant strength after t=1,=p/2.
Thereafter we expect binary oscillations that should correspond to the
solution in Example 3.1 for some a in (3.13). In our calculations we to0k
p=1/3and N =1000. The results, for o = 0.2,0.3 and =024 are displayed
in Figure 8. The agreement with the predictions of Example 3.1 is quite
good. Tor example, for o =0.3, the cxperiment corresponds to a = 0.48
(this predicts values of @ and b next to the shock of a =13 and b= .63, as
in the figure). Note that the values of @ nceded here are not too different
from the ones we computed for sinusocidal initial data in (5.2).

Remark 5.3: When & > 0, the solutions to the modulation equations stay
well inside the hyperbolic rcgion ab> 0 and blowups do not vccur (see
Remarks 4.4 and 4.5). However, the errors produced by the comncer present
in the solution of the Hopf cquation with initial data corresponding o (5.3)
still occur (see Remark 4.5), These errors seem to be the source of the small
oscillations (which are not part of the ¢xact solution in Example 3.1) that
can be seen in the envelopes in Figure 8. These oscillations arc sironger
near the “hcads” of the oscillatory regions and fade out neur the shock as
time advances. This, of course, is because the disturbance caused by the
comers at the moment of shock formation moves away with the heads of the
oscillatory regions.

Y Thus &= 05 Is & node: Xy — 115, where N = 2M.
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duty us in Equation (5.3), with p= &, f=1/N, and N = 1000, The solutivn i displuyed in
b=z x,=nik=1lor e —0.24 and o —=0.2{a) and U3(h).

To avoid the dilficulty pointed out in Remark 5.3 above, we also consid-
ered initial conditions of the form

u,(0) = —tanh[10(x, 0.5- ah)]

(5.4}

to repluce (5.3). These should also setlle into solutions of the sort found in
Exumple 3.1, but {since now the process of shock [urmation is gradual) less
“nuise” should be produced when the shock is formed. On the other hand,
the formation period of the shock is now not as Example 3.1 would have i,
s0 the shupes of the envelopes near the heads of the waves will differ,
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The results of the cxperiments with initial conditions as in (3.4) arc
presented in Figure 9, [or N =1000, ¢ =0.2 and o =0, 0.1, 0.2, and .3,
Again. theoretical arguments show that () =10 and &(0.5) = 1. The follow-
ing other values follow from the numerical data

(0.1) =0.148, «(0.2) = 0.308, (
a(03) =0491, «(0.4)=0.7135.

en
Lo 1]
—

LOF Kafu Ae=ianh| 0 mel Saarl M=1000 2000 camtr=il. &
T T - b T T

n T 2 o2 o4 s 04 0T an ea [
()
Figure 9. Solutions of the seheme (1.2) with boundanr conditions w, and «ay constant, aod

imitial dats: e (= —tanh(l, +05— chlh where D<x, =mh= [, h=1/5 N — 100 and
e s a constanl, a, is displayed for 1= 02 snd o = (La), D.1(b), 0.20c), and 0.30d),
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These values are about the same as those in (5.2). The differcnee is that, for
the examples in this Section 5.2, (3.18) is actually valid for all values™ of o,
not just & =0 and e =05, This will bc shown in later publication.

6. Pulses in moving shocks

In Section 3 we showed that the stationary modulation equations for binary
oscillations admitted stationary steady-state shocks. Then, in Sections 4 and
5, we smdied solutions of the scheme that exhibited these type of shocks

* Thus it is passiblc, in particolar, fo mcasure the valucs of o with acewracy, Tn general, as we
mentioned earier, (3.15) & oply a rough approximation to the true condition, so thal & 15 nol even
defincd accuratzhy.
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We showed that they have a very strong phase dependence—with the
amount of oscillations gencrated varying from none (when the shock fell
cxactly halfway between nodes x,) 1o the maximum allowed by the hyperbol-
icity condition ab > () (when the shock coincided with a node x, ).

Now a natural question is: Whal happens if initial conditions ure given
that are a small perturbution of those that give stationary shocks, as above?
In particular, what happens when a shock moves (slowly) through the grid?
We may speculute a priori thal pulses of oscillation will be gencrated,
achieving their maximums when the shock interseets a grid point and
decreasing to a mimimum in between intersections. These pulses will then
move away [tom the location of the shock.

Of course, as the modulation equations for binury oscillations are hyper-
bolic and nonlincar, the shape of the pulses will distort in time—and
different pulscs may interact This should lead to silwations where the
equations cease 10 be valid, What happens aftcrward is one of the main
questivns we would like to investigate. It appears worthwhile, therefore, (o
sct up an cxperiment in which this situation arises. Thus consider the
following s¢t of initial conditions for {1.2)

w,(0) = 8 +sin2wx,, X, = nh, (6.1)

where & is a small comstunt, as vsual A=1/N and 1 <z < N Jor some large
N. and we use periodic boundary conditions. The corresponding solution of
the Hopt equation in this casc breaks at 15 =1 /47 = 0.0796, x,; = 281 +0.5.
Thereafter a shock forms that moves at speed 2.

The results of an experiment with § = (L01 and N = 4000, with conditions
as in (6.1), are shown in Figure 10. A pulse is indeed formed each time the
shock crosses a node—cxcept that the shock speed is not 28, but some-
where in the range 2.2§ to 2.38. The first pulse formed™ is clearly binary in
nature when it forms; laler ones are not but arc almost so. We make the
following observations.

(a) The churacieristic speed® A= 2y/ab is maximal when a = b, i.c., when
there are no oscillations. Thus the pulses tend to steepen from the “back,” a
feature clearly visible in the figures. Wave breakdown failure of the binary
modulation ¢cquations should eventually occur.

(b) Successive pulses do not move at the same speed. In fact, us a pulse
moves away from the shock it slows down* Tn consequence, the pulses tend
to “pile up” as time progresses. As they interact more and more, the
departures from a simple binary oscillation model become larger and larger.

*This requires close inspeetion of the outpot. It s not clear from the figare.

U the pulses o the rght of the shock move Tolkowing. roughly, the eharseteristics wilh speed A,
Those 1o the left move with speed — AL

A (ued very accurate) explanation (s thut the pulses *ride” om a mean level that is decreasing.
Thus, sodoes their vverall speed,
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Figore 10, Solution of the scheme (1.2) with periodic bowndary condilions snd inital data
AU — 001+ sin(2wx, ), where s x, —wfi <1, h=1/N and ¥ =4000. s, i displaved for
i = 1.09040a), 0.11220b}, 0L1231c), and 0.1500(d), (d} Polscs have already starled Lo merge and
interact,

A more delailed analysis of the behavior of slowly moving shocks of the
type above—and the pulses they generale—will be presented in a later
publication.

Finally, we point out thut when 6 in (6.1) is not small, as the shock in the
IMopf equations [orms, the oscillations thal arnisc in the solution of the
scheme are not period two and appear to be quite complicated. An example
of this is shown in Figure 11, for 8 =05 and N = 1000. If the oscillations
shown in this experiment were binary, Figure 11h (M = 1 average in (4.1))
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Figure 10,  Contimugal.

would show no oscillations. This fisurc shows thal, even though there is a
large binary component in the solution, that is not all (by a wide margin).
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