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Oscillations in a nonlinear dispersive system of equations.

Numerical ecperiments are presented that illustrate the emergence of oseillaiory behavior in the solulions of @ semi-
discrete dispersive scheme approzimoting the Hopf equalion. The oscillations ardse al the same lime thet the classieel
solution of the Hopf equation develops a singularily and generally have a spatial period equal lo twice the grid size.

1. Introduction

Wisxamine the finite amplitude oscillations arising in a dispersive semi-discrete “pumerical” approximation to the
Hopf cquation initial value problem (1): u: + (%) = 0, wfz,0) = f(z), where f = f(z} is (generally) smooth.
“The "approximation” Lo be considered is given by the following semi-discrete (continuous in time, discrete in space)
dispersive difference scheme {2): #a + 35 (¥4, — uh-1) = U, where n is an integer index, 0 < h & 1, ua(0) =
flEa), ¥n = RA+ 20 and g is some arbitrary fixed constant. Expanding #n4; in 2 Taylor serics centered at £, the
leading order truncation error for the scheme is found to be nonlinear dispersive u, + (u2)_+h? (Ju?), = O (W)
1t Follows Lhat the continuum limit, & — 0 should present many similarities with the well understood zero dispersion
limit, ¢ — 0, for the Korteweg-de Vries initial value problem =, + (1%)z + ¢ = 0, u(z,0) = fiz). The behavior
of the solution u = u(z,i;¢) in the limit ¢ —+ 0 is well known ([1], 2] and [3]): As long as the solution of equation
{1} is smooth, u(z, [ ¢) tends uniformly to that smwoth solution. However, when t exceeds the thne afier wlich
the solution of (1) breaks down, u{z, {;¢) develops oscillations over some x-interval near the breakdown point. As ¢
vanishes the amplitude of the oscillations remains finite and their wavelength is O(c). The nature of the oscillations
cnn be predicted rather precisely in this case.

2, The modulation equations for binary oscillations

Here we derive the Modulation Equations for binary oscillations and study the eguations. An exact analylical
sob-ion is provided for the case of step inilial data. Consider the limit & =% 0 of [2), when the odd and even u, are
ap. .ximated by two distinet smooth functicns a(zy, 1) and b(x,,t) — modulated binary oscillations, Expanding
in ‘Tayler stries around =, any function evalnated at zq.y and collecting powers of h we obtain, at leading order,
the equations (3): a + (b*)s = 0 and & + (a?): = 0, with initial conditions alz,0) = b{z,0) = f(z), Given
e Tnct thal @ and b ace equal initially, one may wonder how it ever develops that o £ b This occurs because
“shocks” are allowed in {3). A steady discontinuity across which the binary oscillations simply change their sign
is consistent with the continuum limit of (2). Thus (3) allows for steady shocks, across which a and b change
signs. Aller a smooth solution Lo {1) breaks down — and if the solution is odd around the point of breakdown
— binary oscillations, governed by (3), will arisz in (2) {with a steady shock at the point of breakdown and an
expansion fan on cach side) The mechanism is made clear by the exact solution (4) below. The system (3] is
hyperbolic when ab > 0, has characteristic speeds Ay = +2/ab and can be written in Riemann Invariant form.
When ab < 0 the system is elliptic. Considei now the problem for (3) ont > 0 and —00 < = < o0, with initial
data a(z,0) = b(x,0) = —sign(z). The solution will be odd, with a steady shock at x = 0. But just stating that the
jumps keep the squares continuous is not enough to determine the solution uniquely. An additional condition at the
shock (determined by the details of the continuum limit in {2), that we study elsewhere —see (4]} is needed. Here
we Lake the simplified form §(0,t) = aa(0,t), for some given constant 0 < a < L. In general the constant o depends
on #g above in (2). Thus the occurrence of bimary escillations is strongly phase (placement of the grid relztive to
the initial conditions function f(z), given by zg) dependent: for & =1 no oscillations occur and for & = 0 maximum
amplitude oscillations are generated. The solution, indicating the generation of oscillations by the discontinuity, is
then given by (4): alz,f) = b{z,f) = 1forz < -2, a=(1+5 andb=(1- S for — 2 <z < —2M1,
a=flJoandbsaa for =28t <z <0, where S =+/1+ (z/2t)® and f = [4a*5f(1+ o™ 5))]2.

3. Some numerical experiments

[n this seclion we will consider an cxample of initial data for the problem (2) and integrate the equations nurnerically.
The data are such that the solution is odd around the breakdown point for the smooth golution of {1). The aim isto«
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Figure 1: w,(0) = sin{2xr,} for 20 = 0 and i = 1/1000 (upper) or o = 1/1001 (lower) at time { = 0.13.

illustrate the general mechanism introduced in Section 2 for the fonmation of steady shocks and binary oscillations,
For the initial data we take ua(0) = sin (272n), =5 = nh, where h = 1/¥ and zo = 0. The equations are then ###
integrated using periodic boundary conditions. We show here the results of two calculations. One in the upper == 3
figure with & = 1000 and the other in the lower figure with ¥ = 1001. A simple symmetry argument shows that " o
N = 1000 corresponds to o = 0 at the shock, while NV = 1001 gives @ = 1, The numerical results arc strikingly © L ]
different and confirm this. For N = 1000 we see period two oscillations arising at = = 0.5 at a time # = g = 1/47
and fanning out in both directions — to fill a region of width Ax = O(f - #5), centered at z = (L5. A shock is &-!
clearly visible at z = (.5. No oscillalions develop for the case N = 1001, where a = b for all times, e
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