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Models of Hysteresis, Edited by A, Visintin, Longman Scientific and Technical, 1983,
221 pp., 34095

This is volume 286 in che Pikman Resaarch MNotes in (achematics Series. It collects the procred-
ings of & workshop on the subject. held in Trento, Ieely, in Sepsember 1091, There are 18 papers
on the mathematical nspects of hystaresis, a proparty exbibited by phenomena such s piasticicy, far-
romagnecism, lerraelectolcity, undercooling affects in liquld-soliel (oc vapour-liquid) tranaitions. Jince
all praminane mathemntisians active in the field are represontod, the volume offers & state-of the-art
summary of the subject. The models i d amploy k el toples such a8 partlal diferencial
equations, atechastic differantial equations, control theory, stanility, parabolic variational inagualities,
singular pertirbacions, sigenvalue analysis, differential sutemata, semigroups. and others.

Technological Mechantes of Perous Bodies. By B. Druyausv, Oxford Universicy Press,
L5893, xii+184 pp., $57.00

This ts & volume in the series Oxford Scienca Publications. It alms to deseribe and investigate the
capability of some materials to acquire irreversible volurmesric deformations. An example i the compact-
ing of & porous {powder) material in a closed mould. Some theoretical questions specific Lo compressible
badies. such s she oxtornai friction of plastic compressibla bodies. are given specinl congideration. A
numbar of mathods and theoresical questions are ol interest not ooy for compressivle but also for straine
hardened macerinls,  [sotharmal and soo-iscthecmal deformation processes ace consideced. Chapter
headings: 1, Foundation of porous body plesticity; 2. lnitiel ead boundary-value peoblams, swsremum
thenromy, and discontinuisies; 3, Equations of bwo-dlmensional Aows; 4. Compacting; 5. Reduction,
extrasion. and rolling; 6. Densificasion at evaiuated temperatures; 7, Conclouum, theary of rigid-phase

aintering.

Purtial Differential Equations. By Fribz John, Springec-Veclag, 1992, x-+249 pp., $32.00

This |s voluree 1 in the serias Appliedd Mathemaeical Scecces. It is the foueth sdition ol she monograph
first published in 1071, A considerable amount of new material has been added to thia edition. There is
an extensive diseuasion of real analytic funcilona of seversl vactables in ehapter 3. Clhapter § now includes
2 mora dewniled discussion af Hilbert spaces wish applicasions bo the boundary behaviour of solutions
of the Dinchlee problem o higher dimensions. To chapter T thers hoy been added o proofl of Widdez's
cheorsm on aonnegative solutions of the heat equation. A new chapter, chapter 8, contains H. Lewy's
conscruction of a linear differential equation without soiutions. There are also more problems, designed,
in part, to extend the materlal diseussed in the text., Chapter beadings: 1. The single first-ordar
equetian: 2. Second-order equations: hyperbolie equatioas for funetions of two indapendent variebles:
3. Charactaristic manifolds and the Cauchy problem: 4, The Laplace equation; 5. Higher-order allipnic
equasions wich constant coefficiants; 8. Parabelic squations; 7. I, Lewy's ewample of a linear squation
without solutlon.

Probability. By Alan F. Karr, Springar-Verlag, 1993, xvii+282 pp., 330.00

This it & volumis in the series Springer Texts I Stariseles. [® g a et ab the inteoductary Zradunte
level. Cn the question whesher or not to include messurs theory, the author conciuded “that it is
incullsctunlly (mperative and pedagogicaily senslble to introduce and we coneepts wod resslts fram
measurs theocy, but shet it is nob necessary (and perhaps oob sven desirable} o dewelop and prove
tham individually nor to crent measuce theory 21 & subject in lts own righe.” Hence, many proofs we
downgraded or omitted, but the materlal is presented. Chapter headings: Pralude: Random walks; L
Probability, 7. Aandom wariabies; 3. [ndependance; 4. Expectation; 5. Convergence of ssquences of
random variables; 6. Ch teristic i 7. Clasaical limit theorems: 3. Prediction and condicionat

expeceating; 9. Martingeles.
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THE ONE-PHASE SUPERCOOLED STEFAN PROBLEM
WITH A CONVECTIVE BOUNDARY CONDITION

By
DOMINGO &, TARZIA {Dpte. Matemdtica, Univ, Ausiral, Resaro. Argenting)

ARD

CHISTINA V. TURNER {FaMAF, Univ. Mac, de Cdrdoba, Cérdoba. Argensina)

Abstract. We consicor the supercooled ons-phase Stefan probiem with convective
boundary condition at the ficed face. We analyss the relation between the heat transfar
coefficient and the possibility of continuing the soiution for arbitrartly large time inte rvals,

1. Introduction. In shis papar we study the following problem:
Problem I: Find 8{y,7) the temperature and r{r] the free boundary such taat
r{r} is Lipachitz continuous for » > 0;
#{r} is continuous for © > O
Ay, =) is continuous for 7 > 0 ead 0 < ¥ £ 7iv);
B (n,7), By (. 7) are continuous for v > 0 and 0 <y < rir);
9, (y, ) is contimuous for 7 > 0,0 € y € 7(T)
rir) and 8(y, ) obey the conditinus:

Be=aly, O0<y<er(r) D<ram,

Plr(r),r1 =0, O<r<my,
kby(r(e], r) = —pAf(r), Dear<m,
k8, (0,7} = h(B0,7) = g(r]), T>0.

y,0) =Byl 0<Sy<h

rl0} = b
The parameters are

a = ::id- — material thermal diffesivity (m?/s);

& = material thermal conductivity (K.J/s"Cm);

2 = material density (Kgafm*);

A = latent heat of melting {KJ/Kg)i
Receivad Decembar 2T, 1993,
1001 Afathernatics Subject Classifieation. Primary J5R35, 20AT2. ) »
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h = fluid to material surface heat transfer coefficient { KJ/s°Cm?);
g(7) = ambieat fluld temperacure (*CY;
pe = { = specific heas (KJ/2CKg).

The melting fronk at time 7 is r{7) while 8{y, 7} is the tamperature ab position y and
time r.

It is kaown chae a solution to Problem I exists [1], when 8y(y) < 0 and g(r} < 0. This
problem is often referred to as a mathematical scheme for the freezing of a supercooled
liquid {although chis simple schemes for such & noneguilibrium phenomencn is far from
being satisfactory) [3].

The freezing of a supercooled liquid is due to convective hent transfer from a fluid
with ambient temperature g{T) fowing across the face 2 = 0. The adimensional problem
is obtained by the following transforms:

csdf kT
B= 4 ¢ o

=4
oz = Sor), (= TU
Then the variables (7', 5, 2) satisfy the problem
Problem IT:

(L1} 20 = &, in D

{L.2} s(0} = L;

(1.3) a(s(t), ) =0, 0= < T}

(1) ze{s(t),8) = =3{1}, D <t < T,

[L3) z{z, 0 = (), D= T < |;

(L6) 2:(0,0) = Az(0,0) =~ G()], 0 <t < T,
whare 7 = f‘; is an adimensionai parawmeter, and

Dr={{z,t)|0<e<s(t) 0<taTh
a
o0-50 (25

I1. The one-phase supercooled Stefan problem. In this section we consider the
following hvpocheses:

wlz) 20, 0<z<l and G220, t>0
pocd the compaii Bility condition
@'(0) = Slw(0) - G{0}.

‘The first simple properties of the solution of {1.1)-(1.6) are summarized in the follow-
ng proposition:
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ProposiTion 2,1. IF (T, s,2) is a solution of Problem I1, then
i) 220 in Dp.
Uy afty <0, ¢8>0
iy IFGit) <0, @lz) > G0} = maxse G, thea 2 = G(t) in Dr.
vt B 20,6 <0, then z, > 0in Dr,
w] IfG >0, >0, then 2, >0 in 4
Proof. 1], i), and iv) follow from the mesximurmn principle.
iii) follows from the minimum principle applied to w = 2 — G, where w satisfies the
following equation: e — we = G, Then the minimurn of & is on the boundary.
¥} follows [rom the maximum priaciple applied to v = 2 = 2.5,
ProPOSITION 2.2, TE (T, s, 2) satisty (1,1)-(1.6) of Problem II, then the foilowing integral

represenbations ave satisfied:

i . )
s(t]#l+£ -,:-;zjax-f& x,(U,.-]-dr—jg sz, t)dr, (21)
‘ ot 4it]
% =3 +[m(s)dz+/ﬁ z[O,-—)a’-r—]u z2{z. ) d, (2.2)
F . I )
5(4) {n +gs(e;}' =:+g+fv (l+3:)<p(=)dx+-j:,36'{r)df
(2.3)
ald)
-f " 11+ 82) el t) s,
o
gty S _a3 L [Mfa | 2N
7 _T_?*E‘j;(-3+2)‘g{z)dr (24)
(L) a2 n
_J{ (%‘h%);(:,:)an]j;: sz, (0 + 1) drdr.

Proof, Consider Creen's identity

/f [uLuuuL'u]dxd-.'=j£ [ty = uv) dr - uvds
¥ il=h

where [ denotes the heab operacor and L* its adjoing and the formulae [2.1)-(2.2) are

obtained by setting u = #(2z.4) and v = 1 and x respectively, (2.3) follows from (2.1}
g

plus B times (2.2), and (2.4) is obtained by using v = 3= =2,

ReMaRrk 1. In the following sections we denote
. 1 t
Q) = L+'§ +f (1 4+ Bzhs(z) dz a.-f AG(T) d. (2.57
R | 0

IF 0(1) = 0, wix] is Hélder continuous for = = 1, and G(i) is piecewlisa continuous on
every interval (0, t), ¢ > 0, this problem possesses one solution for suitable T “sufficentiy
small” (see (1], [2], 3] where uniqueness and continuous dependence are alsa discussed).
Moreover, if o soiution existy, then three cases can oceur (see [1], Theorem 3 and [2]).
{A) The problem has a solution with arbitrarily large T.
(B) There exists a constant Tg > 0 such that limy_7, s{t) = 0.
Q) There exists a constant T > 0 such that infierpze 3(t) > 0 and lime.r, ${(t) =

=1
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We shall investigate the occurrence of bhese cases in connection with tha behavior
of the initial data p, the adimensional temperature @ of the external fluid, and the
adimensional coefficient 5.

Our next aim will be to look for some conditions on s, &, and & giving an & priori
characterization of cases {A), (B), aad (C).

Proposteton 23, I G <0, p(z) = G[0), and the solucion (T, 3, z) of Problem 11 is case
(B), then Q{Ty) =0.

Froof. Seltiag t — Tg in {2.3) and using the boundedness of z obtaired in Proposition
%1 we conclude the thesls, O

ReEmaRK 2. §t) is a decreasing function of time since Q) = 3G(1) <0, ¥t

REMARK 3. If we consider the particular case wheee the initial temperature @{z) is
zaro and the Lemg srature of the external fluid G(t) = —B < D is a negative constant far
all time, chen ((t] is a linear function of time:

Q=1 + = — 38,
If the solution is case (B}, then the stopping time is
1+§
by
w = 7B =0

PROPOSITION 7.4, [F (T, 5 2) is a solutfon of Probiem 11, and the initisl and boundary
data satisfy the following hypotheses:

0wl >Mz—-1),0€z€), 02 M <],

0 G2 -M
and there exiszs a time T such that ({Tg) = 0, then bhe solution (Ta. ¢, 2) is case {B)-

Prog/. Flrst we prove bhag z(z, &) = M(x = 1), This easily follows from the macimurm
principle applied to w =z = Mix - 1)

We replace this inequalivy in (2.3} for t = Ta. Then 5(Ta) satisfies the fllowing
inequality:

r —_ 1 A
S(Ts) [(L—-M} +3iT5) kwi +;ss*{'ra>¥ <0

The quadratic form in brackess has cosfficients | — 4 > 0 and HLoMEM o, 0. Then
3(Ts) =0 2

Foilowing [4] we obtain:
PROPOSITION 2.5. Suppose that ty < T and limiy..e, 5(8) > 0, and suppose ¢ satisfies
the kypotheses iv) of Proposition 2.1, Moreover, Q(f) > 0 for all t < g5, Then i[ we

define a function
" { max{z € [0.s(t}][z(=.t) < -1}
{t) =

0 if 2z, t) > -1, = € [0,5(t),

it follows that
Eﬁ, e} < ill-:{'o a{t).
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Pmof Motice rst that lim, ., {t) sxists because of Proposition 2.1, From iv) Propo-
sition 2.1 we have #(z.t) < —Lin (0, 7(t)] and =1 < z(z.1) £ G ia (g(t), s(8)] for & < tg.
Let ¥ = limsup,_,, 7(t) and lec f_tn} be a seruence such that &, — g and . = Qta) — 5.
Then from ilt) af Propesition 2.2

Altal ity )
3ta) l\l + -.snl.,,, ) = J(ta) —j (1 eﬁx)z(r.l)dw—/ {1+ Sz)z{z, t} dx
i Tiead
n{tul
> QL)+ f (1 = Fuydz
#O
= Qta) % nlta) + 57

) 2 @t + i (o) (14§10

t—ig %

> im ()| 1—-uctﬂ}

1=y

Performing the limit with 7 — o,

‘l’ i
lim | st} [L + gsl"tj

f—ig

This above lnequality is aquivalent to
lim [(s[t)-—‘q(:]] [l T g{s(t}+ﬂ(¢))” >0
P=in

Singe 1 4+ ,[s +q) > 0, %< i, dimpey, st} —n{ > 0. O

PROPOSTTION 2.6. Let (T 5.3) be a solution of Probiem IT such thaw a{z} = Z Mz -1),
D<=t and S = infigop sit) = 0 If thers exlst two constaots o € (0,57},
2o £ {0, 1) such thas Hd < 23, and

sl —d,t) > —z, 05taT,

then a1 — zo)
nil — )
3{t) 2 e

Proaf. [t Is the same vs the proaf of Lemuna 2.4 in 2|, {See also [41) O

PropostTion 2.7, Let (T 5, 2) be u solution of Problern IT and let 2 satisfy the hypobhe-
ses of Propagition 2.1 iv). Then if the solution is case | 0, QT =0
Proof. Suppose Q{Te) > U. Then from Proposition 2.5 the lsotherm z = -1 i5
sepacated From bhe free-boundary. Using Propoesition 2.8, § hes a lower bound, which
contradicts the case [(C). O
CorouLary 2.3, Let (T 5, 3) be a solution of Probler [[ and let &, 3 satisfy the follos-
ing hypotheses:
) lz) 2 Mz —~1,0€x €l
] )= —M, D<Ml
i) @(r)20,05z< 1.
1f the solution |s case [C), then Q@(Te) < 0.
Proof. Tt follows from Propositions 2.4 and 2.7 a
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PROPOSITION 2.9. Let (T, 3,2} be a solutlon of Problem [, and let ¢ and G satisfy the
following hypotheses:

i) wlzyzMiz-1), M>00<z2];

i) &g LYD ).

If the solution is case (A), then Q(¢) 2 0, ¢ > 0. Moreover, i[ Gt} 2 =M(MW > ),
%t > 0, then case {A) implies that Qi) > 0, ¥{ > 0.

Proaf We suppose that the thesis is not true. Then there exists a first bime Ty such
that Q(Ty) < 0. Since Q¢) is o decreasing fuaction, e} < 0 for ¢ > 1. We replace
this estimabion in the inequality (2.3} and we obtain the following ineguality:

i) A
—f {1+ 3x)zliz. t) dx = ait} [1 + Es[tﬂ - (Ht) > =Q(Ty), t>Ta
o 4
Now we integrate the above equation with respect to time:
¢ palt)
[ [ nessste naar camye-mn). 2D (26)
]

then
[ (1+ Fx)a(r, ) dedt < KTu)it=To), &= Th- (2.6}
D

The following step will be to seek an inequality that conbradicts (2.6).
Using Fqg. (24) we obtain

ff Bz + 1) ntmh-jn'l(¥+§)w{xidz+ﬁ—;{!)+%ﬂ
8 m] ™ 42
5 (24 L ('E" + E) Az, dr  (27)

a “'3 az? :z2
2—(24 —) ( ? sl ) dn.

From (2.3} and the hypotheses i) and ii)

calt] ;
[ {1+ Beelz, &) dodt = —s{2) |1+ ?ga(e)] +"g + [l(l +8a)piz)ds
o i)

2—_-'1{[—-:-] NGl =-C. ©=0, Cconstant,

where

13
IGHes =—j£ Giryar
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SinceO0 <z <sf{f)<land < 0in Dy
s(f) aft)
f 2(z, t)(L + Gz)c® do > f {1+ Fr)z(z, t) de > -C.
o o

Then

L A g C_
L (G+5)naz-3-5=-0 > 4

We replace (2.8) in (2.7:
ﬁ) =D =0

_ g 1
1+ Tzl : = — =
M,‘l b Ox)zlz, t) dz dt 2 (21“'

This last inequality is in concradiction with (2.6), Then Q(¢) > 0, ¥t > 0. Moreover,
iFG() = =M (M > 0), %t > 0, the case (A) and Proposition 2.4 imply that Q[f) > 0,
¥¢>0 C

III. Asymptotic behavior of the solution.
PropostTioN 3.1. Let /T, 5 2) be a solution of Problem 1T of case (A} under the hy-
potheses of Propositicn 2.9 and {iii) of Proposition 2.1. Moreover, we assume that che
limit of G(t) when ¢ —= oa exists. If we denote Qu, = lime_oo Q(t) and §un = limy . (1),
then 3., is given by
~Ta TS
b= T B S el {3.1)

Proof. The existence of the limit of (t) when ¢ — oo and & € L*(D, oo} assure thag
[ttty oo GHE) = 0.
We denote by z., the lirnit of z when ¢ tends to infinity. The exisience of limy .. z{z,¢)
is due to Proposicion 2.1 and [6, Chapter 6. The funchion zss satisfes: 2, = Din {0, 50}
Zoa[ B ) =0, 25, (0) = F2oa(0); then zolz) = 0, 0 < 3 < 85
Taking the limit when | — 2¢ in {2.3), we have
EEY | 1+ 5 - Qo =0.

That means that . € {0, 1) is she rook D[ the above equation, that is, (3.1}
Moreover, we have .o < I since
e €16 1+ 2000 < (14+8)° & 200 -2 -9 <0.
By taking the limit when ¢ — oo in (2.3} the last inequality always holds due to the
faollowing expression:

i
Q. —-2-9=2 j (1 —=3z)e{z)dz — 231G <0
o

where |Gl = - [ G{r)dr. O
REMARK 4. We nnotice that

L
e =0 5 Qo =um+-§+f (L +Azelz) dz — B Gl =0.
w Q
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PROPOSITION 3.2. 1) For any ¢ > 0 the free boundary of Probiem IT obeys the condition
1
- " - i JEm
ﬁH_IkL-ﬂﬂﬂ.ﬁ%g;GWL (3.2)
iiy If G < 0 and p(z) > G{0), chen
1
Szl Lf.-‘fn np{z)dme-‘zaﬂérifyc{r]. ’

Proof. i) Using the integral represeatetion (2.1] and i) ol Proposition 2.1 we obrain
i3.2). L) 1t follows from the integral rapresentation (2.2) and i) of Proposition 2.1,

IV, The oxygen-consumption problem. Asin 4] we are incerested in the de-
pendence on the temperature G(t) of the externel Auid at the fixed face z = 0. I in
Protlem [I, we perform the classical transformation

u(z, 1) n_/::” {jjm[L + z[a.e);m} ay

then we obtain the following exygen-consumption Problem [[I:
Uge —w =1, in Dy,
s{0) = 1;
ufs(th f) =usls(t) 6 =0, >0
ulz,0) = H(z), DSzl
ug(0, 8] = H'(0) = Blu(D, t) = H(O) =T, £ 0
where

H(z) =/lf1f‘z+q;-{ct]}dad-r.
x Je
Fram sow on, in this section, we consider cthe following hypotheses for
~lglr)<0, 0f£zsL
Then
Hiz)>0,0sxsl; Hle)<0 02251 HYz)»0, 0 <1

PRroeosITION 4.1, Let (T,3,u) be a solution of Problem 11 with -1 <@ = in 0,1
and i) of Proposition 2.1, Thea u(z,1) < A{z), = € (0,s(¢]), ¢ > 0.

Proof, We apply the maximum principle to Wz, t) = u(z,¢] — H(z], which satisfies
the following problem: Wee — Wy =1 = H"(z} = —p(z) > 0, Wiz, 0] =0, Wis(t) t) =
—H ({43} < 0, nnd Wa(0,t) = FW(0,t} + |G 1.4

We supposa there exists a Ty > 0 such that $%(0,Ty) > 0. Tha point (0,7} will
be s maxmum for W. Then the maximwn peinciple implies Wi(0, Tp} < 0, which is a
contradiction to

W (0, Ta) = SIW(0, Ty) + |Gl = O

We conclude that there does not exist such Tp. Then W(z.t) = u(z ¢} — Hlx) <,

o e (0,5, e >0 O
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COROLLARY 4.2. Let (7,5, 1) be a solution of Problem 1L [f G2) > =1, ¢ > 0, then

ulz, t) 2 0in .

Proof. Using Proposition 2.1 iii) we obtain the following inequailty:

alt)  pait) afty il
u(z,t) =f }f 1+ z(z, t)dady 2/ f 1+ &ft) deedy
# k] £l 1
20y 2
={1+C(1) ("‘,+5 —s{fz + f;-] s O

We now consider some properties related to the gualitetive behavior of the [ree-
boundary.
Paoposirion 4.2, Let (T, s.u) bs a solution of Problem [IL Then 2 aad v satisfy the
‘ollowing integral representations:
i) [sieydr=fy Hz)de= 5wz ) gz [y 30, r) - HO)+ [Clie] + ' (0): dr:
i) j: S dr= J'gl THir)dz ‘.L"-" Tu(z, t) dr + _]'D‘u(o,fj dri
i) fys(=)L + Be(r)ldr = Ji Hiz)lL + drjds - L%, 00 + fulds
¢ [y1G1, = () = H(0)]dr. ,
Proof, 1) and i} foilow by applying the Green’s formuia used in Proposicion 2.2 and
iii} is obtained as a combination of i) and ii). T
W now address the question of how the solution te Problemn ITT depends upon G[i).
PropostTion 4.4. The solution (T, s, 1) of Problem 11T depends monotonically an 3.
In particuiar, if (3,50, u), 2= 1,2, are the solutions for &) and . raspectively, aod if
Ghit) < Galt). then sy (1} < 35(t) and vy (z,t) < valz &} however they are both defined.

Proof. This ig seen by considering the dilference
vz, t) = walz, t) = wiz, &}

at the points where they are both defined.
Lot & = sup{t > 0| uai0, ¢} > w0 t)} and leb £7° = supft > 0 | 520t) > sltl}
Let us suppose shat both 7 and ¢°° are finite. By definition, v sotisfies the following

prabiern:
Uz =2, T8 [0-31[‘))! tE (ﬂ, ™

vl 0} =0
uig(t), &) = wis(th4) > 0;

(0,8 = A, t] +{1Gafie ~ 1G1liuell-

Claim 10 8" £t

In order o peove that ¢™ and ¢*7 are differant from each ocher, let us suppose bhat
chey are equal. Then

8) sif"} = s{t"}

B) &4 > S{th

) u{ey{tr), ") = ua(s (£, 6°] = walsalt") 7] = D
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Moreover, ua(0, t) > u{0,t) for £ < £, Then
w(0,8) >0, <t

and
vl (t).8) = wp(s,(t), £) > 0.

Since v has the minimum value zere at (s1(27),¢*), the minimum principle to v in Dk,
we geb ve(s1(¢7),¢') < 0, which is a contradiction by {a) to !

V(s (ET) 6) = uap(51(8°),4°) = g (sa(#7),0%) = 0,

Then & #t*.

Clagm 2: £* < £ is impossible,

On [0,27], 51 (¢) < #2(t), whence #(s1(2}, £) > 0. By definition, u(D, ) > Ofor £ < £~ and
v(0,£*} = 0. That irnplies »{0, ¢*) is 2 minimum value up to time £, whence 20, 27) > 0,
which contradicts

ve(0,87) = Ble(0,£) + (IGullie- = [Cillee- ) = BllGale — | Cullie] <.

Claim 3: i < ¢ is impossible since:

Let t** < ¢ Siace v(0,t) > 0. v(s:(t), 1) = ug(ay{e),8) > 0. for ¢ « +*, the
point (31(¢°7),¢7) is a minimum point for v because v{sy(t**),i*) = ugfs ("), ") =
w ). =0,

By the corner minimum principle,

(51 (8°7), ) < 0,

which contradicts
vz (81 (£77),877) = g (2(t*7), 7 = 0.

Thus the praposition is proved. 3
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