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NON LINEAR INTERACTION BETWEEN LONG
WAVES IN THE EQUATORIAL WAVEGUIDE
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1. Introduction

The change of sign of the Coriolia force in the Equator produces an effective
waveguide for a large class of long atmospheric waves. Among these waves,
the longest and slowest are the nondispersive Kelvin and the dispersive RHossby
and Yanai —or mixed Rossby-gravity— waves. These waves, which have been
observed in the troposphere and lower stratosphere, are beljeved to play a sig-
nificant role in the dynamics of the tropical atmosphere.

The mest prominent waves observed are very long Kelvin waves [2], with
wavenumbers [ = 1 and ! = 2 —j.e. inverse wavelength equal to the whole and
# half of the circumference of the Earth— and Yanai waves {8] with I = 4. It
has been proposed in [9] thal these waves force the stratosphere from below,
contributing lo generate the quasi-biennial escillation of the mean wind in the
tropical middle atmosphere. The oecurrence and persistence of these waves
raise a number of important questions:

a) Why are these particular waves selected?

b} Why do they not dissipate away? The Kelvin wave, in particular, should
rapidly generate shocks, which dissipate cnengy very efficiently [5]. In addition,
one would expect a significant amount of energy transfer Lo shorter waved, par-
ticularly to olher Kelvin, Yanai and Rasshy modes, and to the laster Poincaré

waves,
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¢ Do these various waves interact nonlinearly? Aud do they feel tha equatorial

topegraphy and the distribution of land and sea?

In this work, we present a reduced model which sheds light on these quies-
tions. A more thorough description of this model together with various geophyy-
ical applications can be found in [4]. Tn its simplest version, the model has only
two waves: an [ =1 Kelvin and an { = 4 Yanai, interacling through the [ = 5
mode of the topography, which roughly corresponds to the distribution of the
continents. However, the model can be steaightforwardly extended to include
a larger set of very long waves, which realistically should probably nclude at
ivast two Kelvin modes {{ =1 and 2) and about four Yanai and Rosshy modes.

For clarity, we present the model in the simplest possible scenario of the
g-plane one-layer shallow-water equations with topography and no mean fow,
where the depeadent. variables are required to be bounded as y — #sa. Al
these simplilying hypolhesis can be relaxed, however, in order to build a more
realistic model. We are presently extending the model ta deal with more general
vertically stratified flows, with a mean zonal wind component, with full p]aﬁe-
tary scales, and with waves interacting through a more general “topography®,
such as the one provided by convection. Tr addition, various applications of
the modal are being pursued, particularly to the Madden-Julian oscillation of
tropical cloud clusters and to El Nifio Southern Oscillation of the surface sea t
emperature.

In our redoced maded, the non lincar interaction hetween Kelvin and Yanai
waves Lirough the topogeaphy is deseribed by two coupled dilferential equations,
The equation deseribing the evolution of the Kelvin wave is an inviscid Burgers
cqualion forced by the Yanai wave, and the evolution of the Jatter is described
by an ordinary differential equation forced by just one Fourier mode of the

Kelvin wave. Afler scaling, the equations take the canonical form

Ko+ (5K7), = Y 4 ()™
Y, = —K(),

—

—— ———

-

R

NON L™EAR INTERACTION BETWERN LONG WAVES 285

wheres K{8,7) and Y(r] are the armplitudes of the Kelvin and the [ = 4 Yanai
wave respectively. The independent variables are 8 = {x—ct), where £ measusas
lungth in the zonal direction, £ is lime and ¢ is the speed of a linear Kelvin wave,
and r = ¢, a sow lime variable sealed by ¢, a measure of the strengbh of the
nonlinearity. The reason why oaly the £ = 1 mode of K appears in the seconed
equation, is that this is the only mode which interacts with the topography to
generate a Yanai wave, the § = 4 Yanal mode represented by ¥,

This reduced mode] has a conserved energy, and a shock-free traveling wave
solution for K with a corner, deminated by the ! = | mede. Moreover, nurmerical
experiments show that most big enough initial data converge to a shock-free
wave close to {his traveling solution. Thus the reduced model provides a simple
explanation for questions a, b and ¢ above: thel = 1 Kelvin and the f = 4 Yanai
wave are observed because, interacling nenlinerly through the topography,
they avoid shock formalion, the maia dissipative mechanism for Kelvin waves,
A Kelvin wave with any initial shape gencrales the ! = 4 Yanai, and this in turn
feeds the & = 1 mode of the Kelvin, For a range of vertical seales catparabie
Lo the observalions, no other Yanal or Rosshy modes aze aenerated nonlinearly,
Fast Poincard waves may be generated initially by large gradients in the Kelvie
wave but, once this reaches its shock-free final state, such genaration of fast

waves is highly reduced,

Pheromena very similar to those desesibed in this report, hive heen found

in purely Tvperbolic systems, partieolaly in mas dynamics [ [0 18] o). T

this lalter conlest, the role of Lhe topography is played by a variable entropy,
which acts as a bridge for energy exchange betiveen rvight and left-going sound

Waves,

2. The Reduced Model

We starl with the non-dimensionalized equations for leng waves in & single layer

of lluid of conatant density in the equatorial waveguide:
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Atl(L+a -kl + {1+ A, = 0 (1}
Urtuby tvuy -y = 0 (2)
Uty vy b yu = 0, (3)

where the total depth of the fluid is given by
&
—(1+n=—h)
e )

Here ¢ is the characteristic speed of the linear waves, g is the acceleration of
gravity, i is the non-dimensional perturbation of the free surface, and & the
non-dimensional bottom topography. The z and y velocities u and v are non-

dimensionalized by the characteristic speed ¢, and the spatial variables by the

[
L=l=,
i
where 4 is the linear variation of the Coriolis parameter with lalitude, given by
it
R
Here 2 = 3% is the angular velocily of the Earth, und & = 6378 km its radius.

scale

3=

The time-seale T is given by
L
T=-=
[4
We shall propose an ansatz for the solution to (1,2.3) in which the dependent
variables i, u and v and the topography A are all small and of the same order
of magnilude €.
There are two classes of salutions to the linearization of the equations above:
a nondispersive Kelvin wave and an infinite set of dispersive waves, the Rossby,

Yanai and Poincaré waves, The Kelvin wave is given by

o

N o= Kzr—i)e {4)
v = K(z=1)e ¥ {5)

v =0, (6
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where K is an arbitrary funetion, The dispersive waves have the general form

w ke i) — -

n o= [ﬁh‘n(y) + gy H:{y)} gk}~ 1 7
_ T T it} = 3

u = [k—wHﬂ‘y}+u7—k=H'(y)]e e (8)

v = iHa(ylet,-F ©)

where Ha{y] is the Hermite polynomial of order n, and w = W(k) satisfies the
dispersion reation

syt Db 1) g (10)
w

The solutions with positive w to this cubic equation are displayed in figure
L. The case with n = 0 has only two solutions, corresponding to the Yanai
{or mixed Rossby-gravity) wave. The third sclution (w = —4) to the cubic is
spuriaus; it corresponds Lo a solution Lhat grows exporentially away from the
Equator. Tor n 2 1, the solutions are one Rossby and twe Poincaré waves,

characlerized respectivaly by the inequalities

142 Jre——
wgg—-"-;——"-\;n(m.-l)

and
wzzl-l:z'zn_:_ min + 1),

Notice that there is a wide scale separation between the Rossby and the Poincaré
WILVES.

We shall concentrate on very long waves, with inverse wavelength compara-
ble to the circumference of the Earth P = 40000 km. In order to see what this
means for the wavenumbers k, we need to express P in the spatial usit of our
nondimensionalization, i.e. L, which depends on the characteristic speed e

A Kelvin wave f{z — ), for instance, can be written as a Fourier series

' Kz —)= f R ()efalte=1)

i=1
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where o = % A wave with { = 1, i.e., with period equal 1o the cireumlerence
of the Earth, has a wavenumber k = r, and all other wavenumbers are inleger
multiples of this. Similarly, each mode [; of the dispersive waves has the form

Dz, 1) = D bt

where 7 is an integer and w; = Wija). The actual value of & depends on the
vertical structure of the waves under consideration, Throughoul this communi-
cation, we shall choose a value of £ = 187 m{'s, with corresponding L = 3000 km,
T =4 h 15 min and o = 0.45. Other realistic values for ¢ can be found in Ta-
ble L of [4]. The main effect of £ on this model is bo select sets of resananl waves.
In [4] , we show how different choices affect, this selection, without changing,
lowever, the qualitalive properties of the resulting model. Notice that the grid
underlying the dispersion relation in figure 1 has heen drawn using this value
of o = 0.45 ns a grid-size,

As a Helvin wave interacts with the topography, it can generate other waves
through three-mode resonance. If we denote by kg, kr and &° the wavenumbers
of the Kelvin wave, the topography and the dispersive wave, the conditions for

FEE0NAance ara

& {11)
W = Wik, {12)

kp o+ ko
ki

whure we have used the facks that for the Kelvin wave w = k, and thal the
topography is time-independent. Since all the wavenumbers have to be multiples
of e = 0.45, only a discrete set of resonances can take place. In particular, since
the Kelvin wave cannei have a positive wavenumber kg smaller than o = 0,45,
we conclude from inspection of the dispersion relatton in figure 1 that ne Rossby
waves can result from the interaction of a Kelvin wave with topography, and
the only wave thai can be generated by the first two modes of a Kelvin wave
is the & = —1.8 {{ = —4) Yanai mode, generated by the { = 1 Kelvin wave and
the | = 5 mode of the topography.
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Based on Lhe argumenl above, we shall propese an ansatz with only two
waves, a Kelvin wave and a Yanai mode with [ = —4. The corresponding

asymptotic expansion is carried out in [4]. The resulting cquations are

s (3

¥

¥irie® + Fr)e ™ {13
—K(1,7) (14)

[}

where K{#,7) and Y{r) stand for the Kelvin wave and the [ = —4 mode of
Yanai respectively, @ = {z — «{)/ P represents the linear phase of the Kelvin
wave, norinalized so thal it has period 27, and 7 = & represents the slow
nonlinear Lime. The dependent variables & and Y and the slow time = have
been further rescaled so as to normalize to one the cocfficients of the nonlinear
interaction on the righi-hand side, which depend on the projection of the (zonal]
mede { = 5 of the topography on the (longitudinal) first Hermite polynomial.
Erpuation {13] for the evolution of the Kelvin wave is a Hopf —or inviscid
Burgers- cquation, lorced an theright-hand side by the interaction of the Yanai
wave with ihe *opography. Equation (14), on the other band. is 2n ordinary
differential equation for the evolution of Lhe Yanai wave, forced by the inter-
action of the Kelvin wave with the topography. This system of equations has

very distinctive properties, some of whick are treated below.

3. Properties of the Model

The equations (1, 14} have Lwo main conserved quantities, the mean of K and

Lie botal euergy, which take the form

d pr N \
EL Kig,7)d8 =10 (15)

d ?rH‘Z )
2| VP | —dff | =0 16
d!(”}lifu 2‘) (16)

respectively. The energy, however, is only conserved while the solution remains

and

srnoolh; when there are shocks, it decays al a rale proportional to the cube of

the shock strength.
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Equations (13) and (14) have a family of exact solulions where & is a tras-
eling wave of the form
K(8,7) = F(# = s7)

where

Flz)=st 21!—%\!’C+msfz]. (17

Here {7 is a constant of integration, and s, the nonlinear correction to the Kelvin
wave speed, is a function of C. Notice that, if C is strictly larger than one, the
solution is smeoth but, when C' = [, it develops a corner. In the laiter case,

the solution is

F{z)=5+12 -%:Hcos(z,r’?}, {18)

N

Thus the wave with a downward peak moves more slowly than a linear Kelvin

with

wave, and the one with the upward peak moves faster. The total energy vorre-

sponding to Lhis exact solution is readily computed; its value is

4= 32
E=—=—~15.
9 3
We may wonder about the significance of these traveling wave solutians:
do they acl as atlractors for o large enough set of initial data? Next we shall

address this question through a numerical experiment; more experiments can
be found in [4].

Solving nuinerically cqualions (13,14) is a relatively straightforward iask.

We have used a fractional slep procedure, solving in one step the Hopf equation
K2 i
Ky + (T =0
L
and in the other the system of integro-differential equations

K, = Y(r)e® 4 ¥(r)e™"
¥, = k(1,7

LNLAY Lefr L LIl B0 A AL L 4011 ATALd BFaaial ) mende e HedEoane .

For the Hopl vquation, we use a second order Godunov method (we need a
conservative algorithm, since there is an initinl development of shocks), and we
solve Lhe svelem of integro-diffcrential equations with a second order Runge-
Kutta method coupled with a Fast Fourier Transform, Finally, we put the two
feactional sieps together using the second order procedure due to Strang [7]-

We would itke to peint out that the reduction of complexity in going from
the full system (1,2,3) to the reduced model (13,14) is so big, that we were
akle to program the model in the interpreter language Matlab, with a typical
run saking only a few minutes (such runs represent, though in a very idealized
sense, a few years of long wave propagation in the equatorial waveguide.} Next
we present the results of a typical experiment.

This experiment illustrates quite dramatically the “atiractive” nature of the
traveling wave solution (18). Figure 2 shows the initial value of K. given by a

randemly chosen periodic function; in this case,
F(8,0) = 0.5(3cos({8) + sin(20) ~ sin{18}) ;
the initial value assigned ta ¥{0] is
Yi0) = 0.5{1 +12).

The total encrgy of shis sulution is E = 7.5, larger than the threshold value
1,5, 80 wo should expect fast initial decay [the colution with a corner has the
Jargest energy among traveling waves, and probably ameng all unsteady but
energy-preserving solutions too.) In figure 3, we see the solution K oat v =105,
willi  feashly created strong shock. By the time 7 = 3, displayed in figure 4,
most of the extra energy of the initial data has dissipated at this shock, which
has also eliminated all but the longest modes of the solution. Finally, by the
time 7 ~ 30 of figure §, we have reached a steady state. Surprisingly, this state
agrees neacly exactly with the exacl traveling wave with a corner (18), which
is also displayed. Figure 6 shows Lhe time evolution of e real and imaginary
part of ¥ (7}, the amplitude of the Yanai wave, Notice Lhat, since the speed s

of the traveling Kelvin wave ia close Lo one, and this equals the frequency of the
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mai wave, the period of oscillation of the latter is close to 2. Finally, figure
h1as the total energy as a function of time, showing the fast initial dissipation,
llowed by stabilization at nearly the exact critical energy corresponding tothe
save with a sharp corner.

This numerical experiment thus illustrates what we have found to be a gen-
al fact: nearly all initial data with large enough energy converge very rapidly
+ the traveling wave solution with a corper {18}, through the dissipation of

air extra energy at shocks (the exceplions are highly symmetric initial data,
‘th a symmetry that inhibits any preference {or left ar fight-going waves.) A
wmthematical deseription of this observed behavior, and the only slightly more

wmplicated one for initial data which are not sufficiently energetic {here the

val solution is quasi-periodic), is challenging problem in the theory of par-
al differential equations and dynamical systems. Similar behaviar for waves
gaces has been reported in ([6]).
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