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A TWO-PHASE STEFAN PROBLEM IN A SEMI-INFINITE
DOMAIN WITH A CONVECTIVE
BOUNDARY CONDITION AT THE FIXED FACE

DOMINGO ALBERTO TARZIA AND CRISTINA VILMa TURNER

Abstract We studied a swo-phase Stefan problem in a semi-infinite material. when 2
convective condition is assigned on the fixed face = = 0.

We demonstrate the monotone dependence of the solution with respect to the data
and with respect to the thermal transfer coefiicient H. We also studied the asymptotic
behavior of the solution when H — 0.

1. INTRODUCTION

lo this paper we consider the two-phase Stefan problem for a semi-infinite material with
a convective boundary condition at the fixed boundary, # = 0.

Specifically the mathematical problem consists of determining two functions, z7(z.1)
and v#(z.t), a function z = s¥(2), called the free-boundary, and the time T such that
(uff wH s7 T satisfy the following equations. boundary and initial conditicns. For each
positive H we consider:

Problem Py : (H > 0)

{1.1) pegul — kgt =0, Dy={(z.t):0<z<s¥ (1) 0<t<T}
(1.2 pael —kfl =0, Dy ={(z.t):z>s" @), 0<t<T}
{(1.3) Hiz0)=wizj20. 0<z<s¥(0)=0"

(1.4) oz 0) = wiz) €0, > b oT (0.8} =uioe),t >0

{1.5) ) k(0.0 = Hu?(0.8) - f(1)), 0<i<T
(1.6) o (57 (1), 1) = (T (t), ) =0, 0<t<T
(1.7) ku# (s7(8),0) — kau (7 (2),0) = pis®(t), 0<t<T.

where the phase-change temperature is zero and H is the thermal transfer ccefficient
iH >0

Very general results about the existence of classical solutions 1o the 1wo-phase Stefan
problem have been obtained in i4],5].[71./81. The asymptotic behavior [or the uue-phase
Stefan problem with temperature and Aux conditions on the fixed boundary » =1 are
considered in [2land [3] respectively.
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In {12 the behavior of the solution with respect 1o the heat iransfer coeficient 4 and she
asymptotic behavior of the free boundary are studied for the constant case fley=Tg > 0.
In [13] we generalized this result for the case when flt) is not constant. There it was
considered the one-phase Stefan problem with a convective boundary condition at the Axed
face, given by the emperature of the exterzal fluid (/1¢1) depending on ume. We study
the aymptotic behavior of the corresponding free boundary sy(¢] when the time z0es o
infinity. In {1] and [10] a two phase Stefan problem with very general houndary condition
at 7 = is studied. In [8] is considered a one-phase Stefan problem for the supercooled
liquid with a zero flux at the fived face. In [6] this problem is studied for a general fux
9(¢). In [L1] and [15] is analyzed the two-phase Stefan problem for the supercooled liquid
with flux and temperature boundary conditions it the fixed faces = = 0 and z = 1.

In this paper we show monotone dependence of the solution with respect :o the data
and some asymptotic properties of the ‘ree boundary.

A complete version of this paper with all the proofs and the behavior of the free bound-
ary when ¢ — oo and the corresponding study when the liquid phase is overcooled and
the solid phase is overheated will appear in [14].

In orcer to have existence and umiqueness of the solution we require the following
assumptions upon the initial and boundary data:

i) Let @ = p(z) and § = ¥{z) be positive and negative respectively piecewise
bounded continuous functions .
it} Let f = f(t) be a positive bounded piecewise continuous function.
iii) Compatibility conditions: £{0) > (=) in (0, ), kx'{0) = H{e(0) — F(0)), (b) =
#(b).

Now we will show some preiiminary results, the reformulation of the free boundary
problem and the monotone dependence of the solution with respect to the data (¢, ¥, f, )
and with respect to the thermal transfer coeMicient H.

Lemma 1. Under the above hypothese on the data, the temperatures u (2, 1) and v¥(z.1),
satisfy the inequalities: v <0 and 4 > 0. )

Moreover u®(z,t) < f(t) in D; and v#(z,t) > w(z) in D, when f(t) > 0, vz} <
0,¥"(z) = 0.

Lemma 2. [f (v7, uff ¥ T} is a solution of Problem Py, and w.zw € L), %) then,
setting s = 5, we have the following equality:

{1.3)
. H s(t) o Hb # (k= zH)
Is(t) |1 =222 = 1= f 2200 iz
PS{}( &2‘2) ,alb( 'kz-z)'fo poamn CiL
oo Yy wiz) t
L 1 iy v -t o ff—1 -
-j g\}-ﬁ. ; MIL‘—;)‘! e = fn Aflrid
B }-sl:] iky + =) u':flr:..’.)d: _f:n I'{f\:. - -‘-‘.E"i).) T'fl_rz.:". iz
-0 Q3 ' st L i oy

where a@; = =i=12
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Lemma 3. if (v, uf 57 T),0 = 1,2, are soluttons of the Stefan problem Py rcorre-
sponding fo the deta fi, 5,0 and by, and f i € fa. 21 € P2, ) S v and B < b, then
sf"[i} < sf[t} and uj" < uf, r_rf! < vl in their corresponding common domains.

Theorem 1. {f (u v % T1.i= 1.2 are soiutions of the Stefan prodlem [1.0)-01.7)

cor-':espond'iny to the data H, and Hy with H, < H,, and f > 0 then
v < o oyt L gfle 5] € sTIE) in the common domains where they are defined.

2. THE CASE WHERE THE THERMAL TRANSFER COEFFICIENT APPROACHES TO
INFINITY

We consider the foilowing two-phase Stefan problem for a semi-infinite material with a
temperature boundary condition on the fixed face z = 0. We call this problem:

Problem P,

(z.1) peguy — Katizz = 0. 0<r<sit)
{2.2) pegty — kvze =0, sit) <z <=
2.3) u(z,0) = (z) =20, 0<z=<b
(2.4) v(z,0) = ¥(z) <0, b<z<oo
(2.3) vloc. ) = w(ze),t >0

(2.6) u(0.¢) = f(t) =0, 0<t<T
(2.7) u(s(t).t) = vi{s(t),£) = 0, 0<t<T
(2.8) kyuo(s(t), ) — kau-(s(t), t) = pls(t), 0<t<T.

Theorem 2. The solution (u,v,5,T) of Protlem Py, and the solution (uf v#, 54 T of
Problem Py satisfy the following inequalities,
i) s7(t) < s(2), ¢ >0,
i) uf <u, 0<z<s(t), 0<t<T,
i) v <v, s(t) <z <o, 0<t<T.
if f20, by < b, and H > 0 are provided.

Proof. The proof is obtained by using the maximun principle to the functions Wy = x—upy
and W, = v — vy in the corresponding domains.
a

3. ASYMPTOTIC BEHAVIOR OF THE FREE BOUNDARY

We will study the asymptotic behavior of the iree boundary sH(1) when ¢ — xc or
H — oo In [1] is consider the zlobal existence in a general Stefan-like problem.

Theorem 3. If (uf. v? 5%, T) is the soiution of Problem Py, and w.zw = L*h. xob then
we have the following properties:
H(

i}y If ;7 flr)dT < 20 and :Elrgfm =10, then lim 57 (1) = SI.

where 53 satisfies the equation of second order given by
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5§ -
lz|1=—zx| = pib + -
“(‘ akg) 3 ”(1 T

i) If [ flridr = so, then lim .'t = 1, where a(t) is the free-boundary of the
—= g

——

Jollouring problem:
For each tp = 0, let (o, Vi, V2) be the solution o the following problem Py,

per(Valee = ka(Va),, O0<z <ottt
i peiV)ee = 51(Vi)ey =2 a(t)it 240
1 Va(z.0) =0, 0<z<s™t)

Vi(z,0) = v¥(z.bo), =2 5%(t0)
Vi(os,t) = v (00,t), t2 1
ka(V2)e(0,2) = H(Va(0,8) = f(£))  t2 b
Va(o(t),t) = Vila(t),t) =0, t2to
oftg) =0
| ky(W)alo(t) t) = ka(Wa)e(elt).t) = plo(t),  t>to
| Proof
! i) First we obtain the following bounds for the functions uff and v
(a) u(z,t) € U(z.t),in 0 < z < s(t), £ > 0.
g (b) Viz,1) € v¥(z.t) in s7(t) <z <20, 1 > 0.

i where U and V are defined by the following problems:

pely = ke, =00 B<z<oot>0,
| kaU(0.2) = H(U(0,8) — f(t)), ¢>0,

. 0g=z<h
U(=.0) = {‘g":} o

and
poy Ve = e Voo = 0. D<z<0,t>0,

V0.0) =0, t>0

Vice. t) = wioo), t > 0.
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Using the integral representation (1.8}, the bounds for «¥ and v¥
and taking limit when ¢ — >c we obtain the thesis.

ii} The sketch of proof is the following:
Using the maximum principle we can prove that o{¢) < s7(¢}, ¢ > ty and
Vaiz, 8} < uf(2,1), V{2, 1) < v7{z.¢) in the corresponding demains. for ¢ > 4.
Now. we use an integral representation like in Lemma 2 with the adecuate initial
condition 2t ¢ = 7y and we get

H o
ols™ (£) (1 + 5%5”{:)) = pls(to) (1 + %} s “ by + )W (z10) dr

y = i klr He o s . ¢ £
.j’ﬂm(hw—_zd)u 1;..una'=~.£° Hf(r)dr
i j;.L . = u .
— — mna - i +— e (. -
fn (h . qh)u (z.t) dz /‘“m‘k, LYz ) d

< Cltg) + plo(t) {1 + ;‘E—;o{rl) .

where
. H 2% (19}
Cta) = pls”(t0) (1 - "’—E-?:}—H) + / (kg + 2 H ) (2, 1g) de.
~A32 1]
Then we have "
o¥(t) < sift) < 7 (t) + c(eo:;?g,—

Taking the limit when ¢ — oo in the above inequalities and using the fact that

H
}12_0'(*) = oo (since [j° f(r)dr = oa), then ‘]j_% 30{?]} =1. g

We state two preliminary lemmas in order to prove the convergency when H — oo

Lemma 4. [f(u¥, v¥, 57, T) is a solution of Problem Py, with f > 0 and H > 0 then

t Is(t)(pl + & = C
f (@?(0.7) = f(r)dr < SN o W liaan) + I,
a H
whereC = = [° %ﬂi(z)dx > 0 and s(t) is the free boundary of the problem Py,
a
Lemma 5. {f(u, v7, 57 T is a solution of Problem Py and the data satisfy { > 0 then
(w¥ 0¥, 7 T and (v.v. 5. T) satisfy the jollowing nequatity

sty — gty =0 zhy{uiz. i) — uiz ¢
inn[.s .r}_) 5% ji‘f Tho{uiz. i) —u iz, ”dx-:
- [} &

[ Thyviz.il—viz.1))

/ dz < [ katf(r) = ul0.7)dr
FEEEE] 4] Jo

Theorem 4. {Convergency when H — =¢) . [f (u®, v, 57. T is a solution of the prob-
fem Py, (8.v,5.T) is a soiution of Prodlem P, and the data satisfies { = 0 then
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B limpg_es?(t) = 51
i) Hmy e w7 (2, ) = 2(z.8) and Hmy_. vHI:.r.l’.} = wviz,t} for all compact sets in-
cluded in their corresponding domains.

Proaf.
Using the Lemmas 3 and 8. Theorem 2 we have the ‘ollowing inequality:
_ g ,af(s=(e}2— SEit)) o, Istedol + ;‘:gfﬁ.fml +cl
:' for all H.
Then for each ¢ > 0, limg_,57(t) = 5(t). We can do the same with the difference
1 u—ufandv—of
C

1. DISAPPEARANCE OF A PHASE

In this section we will discuss the relation between the disappearance of 2 pnase and
the total energy supplied to the media.
We will use the following definitions:

: (ks + HI}%.{EL]. 0 <z < by,
; ®(z) = 2
] (kl-&-ﬁﬁr) wf_x}l, by < r < 0.
k‘: (=41
T = in.f{t'ﬁ > o.sﬂf_t*} = § or sﬂff,'] = L ‘}
bH’ -0

To= sup {Ts)
dcichy

! Theorem 5. If 0 < plb? (l__of—‘é{) -i-j:oi'{:}d:.*f;ﬂf(f)dr = Q(t) < = for all

£> 0, then Ty = =, which means that neither phase disappears in a fnite time period.

i Proof. Suppase Ty < oo, then there exists a sequence {8} with lims,.q Ts, = Ty, such

{ that $(T5) — 0 or 5(T5) — 20 as & — 0 or §; — o,

i We consider the case s(T5} — 0 as & — 0 then, using the integral representation of
Lemma 2, we obtain

T e . H . N Al bl.l' ) b T‘. .
Pi-s(lﬁ,-j (lfmal‘?}'—j/l = pib (1 - gkg) '?'/; @(I]dﬂ’.’-!-j{] Hfl(a"fd'-"

AT} Hir, <o Tk vz, t)
_.f J {kI—L-;H]u £ ']dr-f (ﬁ:l-i- LH) { ~dz

’

-0 (23] +{Ts, ) xa @y
ATy} ufie ¢
ey R R N L L)
<0 [+3]

since v¥ < 0. Therefore, as siTs,) — 0, as 4; — 0. then 0 > Q(Ty), which contradicts the
assumption of the theorem.
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The case 3(T; ) — 2, as §; — 5 is similar to the previous case.
d
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