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The Forced Inviscid Burgers Equation as a Model for
Nonlinear Interactions among Dispersive Waves

Fernando Menzaque, Rodolfo 3. Hosales, Esteban G, Tabak, and Cristina
V. Turner

ARSTRACT. The forced inviscid Burgors equation is studied as a model for the
nomlingar interaction of dispersive waves. T'he dependant varizhble w(x. 1) s
themight of Ay an arhiteary mode or set of modes of a genorsl svstens, aud tie
foree is tuned to mimic the effects of other modes. which may be vilber near
ar fur from mesonance with w.

When the ferce i uuimodal, a Banily of exaet tfaveling waves filly de-
geribes the agymplonie bobavior of the system. When the foree is multimodal,
with the frequencies of the various modes clrse tn each other, the assmplotic
solntinm s quasi-statinnary, puncinated by faster intermittent events. The cx-
istamene of thess “storms™ may have significant implications for coergy teansio
amang mikdes in more genstal systems.

1. Introduction.

I'he nonlinear interaction among a large set of waves is 0 complex phenoweno,
Among the issues involved are the tuning (or demuning) of sets of modes, depending
of how far they are from perfect resonance. This issuc is subtle though, sinee it
depends on the tfime seale of the nonlinear interaction, which itself depends on the
degree of tuning among modes.

A particularly subtle issue appears in the transition from discrete o contimous
sels of waves: how to add up the offeces of vory many pear resonances. Do they
interfere destructively or constructively? In most theories of continuoms spectra,
the former is vsually assumed, to the point of suppressing altogether the leading
order effect of resonances, pushing them to higher orders (han those appearing in

discrete systems.

[n systems thar are both foreed and damped, seatistical cascades often appear,
carrying energy among scales, from the scales associated with the forcing. 1o those
where dissipation transfers the energy out of the system. When the seales of Torcing
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and dissipation are many decades aparr, the intenonediate scales span the so called
turbulent inertiol ronge, where the syslem bebaves ellectively as o Hamiltoninn
one, and sellsimilar energy spectra are often observed,  Attempts Lo understand
the nature of these selfsimilar cascades gave rise to 1he theory of Wave Turbulenee
feg, see (L), |2], 15), and [11].) In order Lo close a very complex system. this theory
makes a number of assumptions, such as phase decorrelation ameny the various
mades, seale separation between linear and nonlinear phenomena, and infinite size
of the system, giving rise o a contivuumn of mades. These assumptions are bard
to justifv, and the theory, despite its besnty, hias o mmber of problems, such as
internal inconsistencies — as when it predicts upscale energy fluxes  and a mixed
record of agrecment with abservations and romerieal sinndations (eg., see [3] and
6.

In this work, we consider a simple model, where surrogates for resonances and near
resonanees can easily be built i the foreed invisend Burgers equation,

| 4
(1.1.1) u;+(zu') = flx, 1],
where f = flr, £) s some smooth forcing, and both [ and » are periodic (of period
2} in space and have vanishing mean.

Here the dependenl variable u(x, () represents a made (or set of modes) with linear
[requency « = 0 (as follows from the zero mean condition,) On the other hand,
the externally imposed force f{r, §) represents other modes of the system, which
(depending cu the scale of their dependence on time) will be close or fer [rom
resonance with .

A vastly different reduced model for resonant energy transfer among modes was
doveloped in [7]. It it interesting to note (kal both models, though completely
different in conception and structure, conlain intermittent regimes — these are
strong in [7] and mueh milder in the present work. It appears (lat intermittenae
is a matural oceurrence in models of turbalent energy cascades.

The nonlinear term in (11,1 hag two combined funetions: 1o trausler energy among
the varions (Foarier) componenls of u, and to dissipate energy at shoeks, Thus the
“inertial cascade” and the svstom’s dizsiparion are modeled by a single term. This
not only implics a hig gain in simpliviey, but could also in fact be a rathor renlistic
model for fluid systems, whers dissipation is almost invariably sssociated with some
form of wave breaking.

The model equation (1.1.1) above is a simplified version of the equalions describing
the interaction among resonant triads ipvolving a nondispersive wave [8). The
simplification consisis in [reezing the two dispersive membors of the Loiad, thus
making them act as a prescribed force on u(z.t).

It would seem thal & more general model, with a nom—zero hnear frequency W, is
the one given by the equation

(1.1.2 kw4 (é f.r!) =5
F
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which is eguivalent to considering non-zero mean solutions to (1.1.1) — e write
i = w + 1, where . is the mean® of v. However, this last equation can be reduced Lo
equatiom (1.1.1) by the introdnetion of the new independent variable ' =& - wi.

A resonant force fz, t) in {1.1.1) is one that does not depend on time; a near
resonant ong, on the other hand. evolves slowly. More precisely, a near resomanee
should be madeled by

1 3.
{1.1.3) i+ (Euz) = ¢ fz, et),
whero i < ¢ < | measures the degree of non-resonance. The reason for the factor f
in ront of the forcing term [ollows rom considering a quasi—steady approximation
to the solution to (1.1.3), namely:

ulx) == (.!.'ﬂjz Fls, et)ds.

This is not quite right, but indicates the corvect result: a (slow) forcing of siee
O(e?) in (1.1.3), generally induces a respaonse of amplitnde e in w. This shows that
any force stronger than ¢ in (1L0.3) wonld render its own modulalion irrelevant,
sinee the induced nonlinearity wonld et oo a much faster time scale than that of
the modulation.

Intersstingly, Lhe ¢'s above in (1.1.3) can be scaled out by & simple transformation:
let § = et, and write u = <. Then, in terms of these new variables, {1.1.3)
becomes (1.1.1).  Hence mear-resonances in (1.1.1) cannot be defined as
an asymptotic limit involving a small parameter o if there is & distinction
between near resonant and nomresonant forees, it will have 1o arise [rom a finite
bifurcation in the behavior of Lhe solutions to (1.1.1) — which in fact oceurs, as we
will show in section 2.

The fact pointed out in the prior paragraph is part of a more general property of
equation (1.1.1), namely: it is a canonical system. For consider a model invalving
nomore genersl noulinearty, such as:

(1.1.4) up + N{u)s = flz. 8},

where, generivally, we can assume Lhat N{u) = O(u”) (sinee any linear term can be
climinated by a Galilean transformation.) Now consider a weakly nonlinear, nearly
resonant. simation, where o is small, the force is small and the time scales are slow.
Thus, take: v = e, [ = e3f= with Lhe time dependence via f = e, and (0 < e < 1.
Then it is easy to see that, in terms of 4, f._ f, and =z, the leading order system is
{1.1.1) — except for, possibly, a eonstant other than 1/2 in front of the nonlinear
term, In facr, this reduction of the equations Lo (1.1.1) will seenr even if we bhave
a system [ie: uin (1.1.4) Is a vector), as long as there i & single force (lined up
with a single mode of the system.)

"Mpte that, hecause f has a vanishing mean, the mean of the solutions te (1.1.1)
is & constant.
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Notation and general properiies.
It i well known that the fnviseid Burgers oguation develops shocks, Tlooughont
this work, we shall use the lollowing notation for various quantitics at shocks:
* A plus (respectively, minus) superscript (or subscript) stands for the valoe
of the corresponding variahle ahead (respectively, behind) of the shock,
e Drackels stand for the jump across (he shock of the enclosed exprossion.
Specifically: the value abead (o the right) mimns the wlue bebind (to the
left). Thus, for example:

In]=n" —u
is the jump in u seross the shock.
Shovks obey the [ollowing rules:

o The shock speed is given by (he Ranpkine-Hugoniot jump conditions,

namelv:

: 1
Sl 1 2y

where i is the arithmetic mean of « at the shock, and 5 is the shock spesd.
o Shocks must =atisfy an entropy condition, which for (1.1.1) stales that o

should jump down across shocks, ie:

| = 0.

Finally, equation (1.1.1} has an energy
n 1 .
Ef(t) = f = w*{r, i,
g 2

which satisfies the equation

B i
(1.1.8) {fo Z(IIQMJ) E‘/; w(z, 8) o) de.

where the sum on the left 5 over all the shocks in the solution. This sum accounts
for ke dissipation of egerpy at (e shocks, awd (he vight hand side represenes the
wark by the fareing term £, That 15, we have:

1 ’ 2&
Es= Z(H{u}"]}ﬂ and H'_;=f n fdw,

0
where Ejz is the energy dissipaled per unit time and W is the work deme by the
forving.

Contends and plare of the paper.

Much of the contents of this paper will be concsrued with the study of the energeric
interplay between the dissipation at shocks and the work done by the foroing fune-
tion. Our mterest fes mostly i sitnations where £t 15 closs to stationary, so that
the work dove by the forcing and the dissipation st shocks approximarcly balines
each other, Either of these then represents the amount of energy Anwing throngh
the system, and the dependenec of this flux on the characteristios of fir ) will
teach us sowetbing aboul the nature of Lthe energy exchange among near resonant
micles.

This paper is organized as follows, In section 2, we study the asymplotic, long
time solutions to (111 vnder nmimodal forees fie#) ~ fle — wt). This long
time asyvmptotic behavior i5 given by @ fanily of exact traveling wave solutions, We
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ohsgerve an interesting hifurcarion hetween near resonant and nonresonant behavior.
taking plave at 4 eritical vidue of o (thar depends on the form and size of the forcing
fo) I |w] is smaller than this critical value, the forcing does work on the solution:
if Jw| is bigger, on the other hand. it does not. We sketch proofs for these resnlts.
which use a novel combination of Wumiltonian formalism with breaking waves.

I seetion 3, woe study two-modal forcings, In which f = g (z) + gl wi), For
large values of w, o has vanishingly small offeet on the asymptotic, long tfime,
solurion u(z, t). For small values of w. on the other hand, quasi-steady solutions
w = ule, 7) arise (where 75 o slow time), punctuated by intermittent events (which
we call “storms™ ) with enbianced rates of energy exchange betwoeen the foreing and
the sulution, at an intermediace time scale (slow, bul faster than v.) The aboormal
rale of energy exchinge during storms hines at the possibility that nonlinear wase
svetems may have repimes whers the energy exchange among modes s strongly
influenced by fast, intormittent events, involving colberenl phase and amplitude
adjustments of the full speetrum, rather than by the sfow evalntion of individunl
TESOMANT sets.

We can make the starement in the prior pavagraph more procise, or an least more
supgestive, as lollows: We show in section 3 thar the exers (integrared ) osergy
exchange during a storm seales like w2 In our model, however, there are only o
tinite number of storms per period, which itself seales like w™'. Thus the average
energeric impact of the storms is of order w'/®, vanishing with «. Yei, in more
complex systems, (here are o mmber of likely seenarios (involving, for instaoee,
random or pseudo-random evenis), in which the mumnber of storms per period will
increase as the period doss, at least as o™ When this is the case, the enorgotic
impact of storms will be at least comparable Lo that of the guasi-sieady parts of
the solution, and we will find onrselves at the threshold of an energy caseade driven
by intermittent evenis,

2. A Single Forcing Mode.

In this section, we consider the equation

(2.2.1 uy + (-Iz"ij = flz —wi).

e

where f = fiz) and w = w{ir. £) wre Ze-perodic in space, real functions, with zero
mean. Here we will assume that f s & sufficiently smooth finetion. and that che
initial condirions are such that the solution 15, al all limes, piece-wise smooth, with
a finite number of shoeks.

As explained carlicr, the foreing terun is resonant if w0 0, near resonant if w is small
and far from resonant if o is big. Notice though that, from the arpument above
eguation (1.1.1) in 1he introduetion, we eannor give an asymptotic meaning to this
distinetion through the introduction of & small parsmeter, sinee this cgquation s
the canonical model for the description of sysiems with a [uid-like ponlinearity.
weakly [orced near pesonanee, [nterestingly, as we shall soe bolow (romark 2.2), the
equation admits exact solutions where thers is & sharp transition between resonani
and poy-resonant behavior, ar a eritical value of the froquency o = w,.

Below we consider a special set of solutions tooeguation (22,1, given by travel
ing waves. These solutions not only can be written exactly in closed form, bt have
spevial signific since they describe the long time behavior for the general
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solution. In subsections 2.2 and 2.3 we show  numerically and analyrieally— that
the solution to the initial value problem for (2.2.1) above eonverges to the wraveling
wave solution as # — oo, which i generically unique,

2.1. Exact Traveling Solutions. We shall seek traveling wave solutions to
(2.2.1) of the form

{222 w(xr. 1} = G(z),

where z = x - wf. Then equation (2.2.1) becomes the (0LD.E,
o d {1 e

i2.2.3) = (§|:G—u.-:| ) = flz)-.

This has the solutions
{2.2.4) Gilz) = w £ /2F(7),

where F' = [7 fla)ds, with the constant of integration selected so that Fiz} = 0
evervwhere.

(2.2.5) We shull define F.. 1o be the choice of F such that min{F..) = (.

These solutions can be used to produce exact (periodic) traveling wave solutions
that both have a vanishing mean, and satisfy the enlropy condition whon they
inchide shocks. Generically, three distinet cases can arise, with the solution de-
termined uniguely by w if F., has a single minimum per period. See
figure 1 for illustrative sxamples.

Case 1. If I' is strietly larger than Fi.p, then the solution must be smooth
with ouly one sign selected in (2.2.4). This follows because the entropy condition
for shocks only allows downward jumps: thus only jumps from the positive 10 the
negative rool are allowed, Glven that & must he periodie, no shocks are possible
when min(F) = 0. In this case, the sign of the square root, and the value of the
integrarion constant defining F. follow upon imposing the condition that the mean
of u = G must vanish,

We can write the solutions corresponding to this case as two families of solutions
{ome for w = 0 and another one lor w < 0) paramererized by single parameter
8 =0, as [ollows:

[2.2.6) u w— signlw) /2 {8 + Fer(2)),

2a
(2.2.7) T [ VAT F Frolz))dz,
L)

w

where z = 7 — wit and F {as defined above) is given by F{z) = 4 + F..(z). These
formulas show that
For jw| > wep, whire wee is defined below in equation (2.2.8), the travel-
ing wave solutions are as smooth as F... Furthermore, they are uniquely
determined by the function f and the frequency w.
Notice that uniguencss, in this case where || > @, does not depend at
all on I, having a single minimum per period.

Case 2. For walues of jw| smaller than

I W
(2.2.8) Wep = =— W aF () dz,

I fo
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oo F oean be fonnd that will satisfy the zero mean condition. When 1his is the case,
oue must take F = Fo. aud allow the solution o jump between the positive and
the negative roots, Then the golution ean rerurn (smaothly) o the positive rool
through the point where £ = 0, which is generically unique, In this case, the
tunable parameter thal one can wse Lo adjust the solution o that w = & has a
vanishing mean. is the positiom = = = of the shock (notice that, hecanse u at the
shock jumps from w_ — w4 J2F o (5) toue — w— 2 (#) the shock's velociiy
isw  therefore it remains lixed in the frame moving with the traveling wave.)
To be specific, assume that £, has a single minimum per period, and let
z = zy be Lhe position of Lthe minimum, Then the equation for the shock positiom
z = 5 1% given by

229)  w=-p [ VeEGdsg [T VARG

where 24, € 8 < 2, + 27, Since the right hand side in this copuction 35 a [strictly)
monotone decressing function of & (with the valuss o for 5 = 2, and —w; for
&= z;m + 2x) there 15 a unigue solution for s, Thus the traveling wave salntion
is unigue,

Hemark 2.1, Notice that, in the [non-generic) case when F. has wore than
one minimum per period, uniyueness is lost when w = wep. This = breause. in
this case. there is more than ane possible point where a smooth switch frow the
negative to the positive root in eguation (2.2.4) can oeewr, This leature is at the
root of the behavior reported in section 3 for the response to foreings with more
than one froquency.

Case 3. In the limiting case when o = g, the shock and the smooth transition
fram negative to positive root coalesce and disappear. leaving a corner moving al
spseed whop s the only singnlariey of the sohition.

Simple cxample; single havmonse Joreing.

I

Consider the case with a single sinmsoidal forcing: f = S{z) = sins (with 2
r —wt). for which F. = 1 —coslz) = 2<n*(=z/2). Then the critical value for o is
aiven by

el

o e | 2", |- —
(2.2.10)) sw=g | .z.mu{i]‘ p= =,
and we have:

Solutions with shocks for the simple example: These occur for o] < oy
4/#, and have the form

| .
(2.2.11) R = oy =S > ’:‘.

In ench period (say 0 £ z < 2w) there is a (continuwous) switch from the mims
to the plus sign as z crosses 3 = 0, and a swirch from the plas 1o the mious sign
{aeruss 1 shoek) at some position = — &, The position of this (single) shork fealborwrs
[rom the zero mean condition (i.e.; equation (2.2.9) for this simple exampls)

E 2x
(2.2.12) G=f Griz)dz + & (2)dz = 27w — 8 cos(s/2),
u "
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Traveling wave solution u = u(x - w t).

o=-2.00

- T T T

FicuRE 1. Examples of traveling waves for the equation
g + (051" ), =sin(x — o). Three solutions are shown:

{a) Smooth solution, for w= - 2.00 < W
{b) Critical solution. with a corner, for w = —w,, = —1/m.

() Solution with a shock, for w = —(.T0wy,.

The "envelope” for the solution with a shock, given by 1 = w =2 F is also

shown (dashed line.} In each case, the solution is plotted for a time t such
that w! = (L8l =.

where 77 = w+ 2| sinfz/2)]. and G~ =w - 2|&in(2/2)]. Thus

(2.2.13)

3 i
x — 2arcoos (TA} .owith DZs < 2.

We van also compute the work per uait time Wy done by the external foree [ oon

this exac

L solution. Since this work must agree with the energy By dissipated at
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the shock (given thar the solution is steady). we have:

= 1 16 PSR
(2.2.14) Wy = fude=F, -—-Tu]d = — {l - (-::-) } .
. 12 1 3

A plot of the work done by the foreing is shown in ligure 2,

REMARK 2.2, For || 2 we = 4/7 the solutions have no shocks (see helow)
and thers is no energy dissipation, nor work dene by the forcing (e the sodution
is orthogonal to the forcing.) This indicates a rather abrupt change in behavior.
which we interpret as (he boundary of resonance, Thar is. 4 shurp transition
from resonant behavior (with the forcing continuously pumping energy inte the
system, which is then dissipated by a shock) to non-resonant behavior {wirth no
work doue by Lhe foreing) oceurs at || = wep. It s casy to see that this hehavior is
general, and not particular to Lhe special harmonie forcing of this simple example.
It will aeenr for the traveling waves produced by any forcing of the [orm in equarion
(2.2.1). It is interesting to note that this behnvior is analogous o a third order
phase transition, with the collective behavior of the modes making up the solntion
switching from a dissipative configuration Lo a non-dissipative oue,

Sinooth solutions for the simple example: These oceur for (W] > w = 4/,
and have Lhe form
(2.2.15) ula, f) = w & 2 (D —caslz  wt)),

where D > 1 and the sign of the square root follow [rom the condition on the mean:

i
f ul{z.t)dr = 0,
(]

It is actally easier to write w as a function of D, as fllows
2w

(2.2.16) w=w(i = 4_-2% VD —rosz)dz, where D=1,
o i

This equation is the same as (2.2.7) for this simple example, with D =1 =4,

C'ritical solutions for the simple example: These occur for |w| = wee = 4/7.

and are given by:
L Tt
g .
in 5

2.2. Numerical Fxperiments, In subscetion 2.3 we will show (analvtically)
that the solution to the general initial value probiem for equation (2.2.1) converpges
asymptotically (for large times) to the traveling wave solution — at least in the
case where the traveling wave solution is uuique, i.o.: F.p, as delined in [(2.2.5). has
a single minimum per period. In (his section, we show the result of 4 wumerical
calenlation illustrating the convergence process.

(2.2.17) u= +{-_~..,.—2

Numerical eode: In both the calculations shown in this subsection, and those in
soetion B, we use a (sccond order in time) Strang [9] splitting tochnigue, separating
the eguation into
1 .
"y Jr and il'++(§u2) =)
Then we use a sccond order Runge Kutta ODE solver for the first equation. or
the second equation we use a second order Godunoy [4] scheme, with the van Leer
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Energy dissipated as a function of .

F1GURE 2. Energy dissipated (as a function of w) by the traveling waves.
The energy dissipated E; (equal to the work W, done by the external force
1) for the equation v, + (0.5 0™ . = sin{a —w 1), is shown as a function of o,
Motice the sharp cutoff at w — = w,, beyond which no work is done by the
force [ This result is general and does not depend on the particular forcing
sinfxr = w i) = it will occur for any forcing of the form [ = fla = wi].

[10] monotonicity switches. This yields a fairly simple and robust shock capturing
(sevond order. both in time and space) algorichm.

Example: Figure 3 shows an example of how a solution to equation (2.2.1) (wilh
J = sinlr = wt) and “arbitrapy” initial data) comverges to a traveling wave as
t b oo Specilically, we take w =050, where w,, is given in egquation [2.2.10)
daned wulr, 0] = sinix).
The convergence Lo the traveling wave solution is doue via the formation of shocks
tonly one in this case) Llhat dissipate energy and force the solution Lo converge to
its limiting shape. The arguments in subsection 2.3 give a more precise descrlption
of this process. Notice how fast the convergence is: the period in time of the forcing
function is T = 2r/fw. and (even though the nitial condition is Q1) away from
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Salution for time: | = 0,000 (2 nfw), withaon=2 Solution for time: 1 = 0.080 (2 =), withwn=2
of Dached line: steady solclion snveiops I 3t Dashed line: steady solutien anvslops
25 e '-,-.‘..'Z“'--.'-“ FXy 3 -.-" bl
z =, - <SG
15+ ......,-’"l "‘--
u ! &
(5.1 0%
a
.5+
“r
18
] 1 2 3 + 5 3
x
Solution for time: t = 0.100 (2 nfe), with uz=2 Solution for tima: t = 0.500 (2 =), withan=2
3+ Dashed line: sigady sclullon envelope 4 ap Dashad lne: steady lﬂl:.l“ﬂﬂ lm:ﬂoﬂ.
2." ...,-_--_-.'—-‘.._._.... 4 Z=: A -
s x a2t
1.5 15p
L u 3
.5 X
ok o
Rl -1
Gl 2 =1
ASE £
@ 1 2 3 i L] L] a 1 ki 5 L} 5 -]
x X

Ficiak 3. Forcing f = sinz in the equation, with 2 = r — wf and
& = wef2 = 2fn. As t — no the solution converges to the traveling
wave & = w = 2 sin(2/2), where the sign switch occurs at the shock posi
tion. The traveling wave has period 27 /w in time (same as the forcing.)

From left to right and from top to bottom, we plot the solution and the
"envelope’ o = 2 sin(z/2) (dashed line) for the traveling wave: (a) Initial
conditions for { = (. (b) Time £ = 0.08 (27 /w), shortly before the formation
of the shock. (¢} Time # = (.10{27 /w). shortly after the formation of the
shock, (d) Time { = 1150 (2n/w), once the solution has converged to the

traveling wave.

the traveling wave) by £ = /2 the solulion is indistinguishable from the traveling

WA,

2.3. Asymptotic behavior of the solutions. In this subsection, we show

(analyvtienlly) that 1he exact solutions of subscetion 2.1 yiekl the large time (t — o)
asymplotic behavior of the solutions to equation (2.2.1), for any initial data, Tirst.
we show that this resulr holds for || > wer, and initial dua relatively close to
the corresponding smooth exact solution. Next we present arguments for the rise
|| < woy, snd arbitrary initial data. The same type of reasoning that we use in
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this sccond part can be used to show global convergence when Jw! = wep. bur we
shall nor earry ont the derails of sneh argwment here.

The main mechanism nvolved in the convergence {(as £ — =) Lo the Lraveling wave
solution when |w| < w0 (see remark 2.5) is much more “cfficiont™ than the mech
anism involved in the case when |w| > wee. This s because the frst mechanizm
involves O 1) shocks at all times, while the sceond has shocks of vanishing ampli-
buade as 1 = 20, The calenlation displayed in figure 3 illustraces how efficient (he
mechanism in the case |w| < wer is, a8 pointed oul at the end of subsection 2.2
By contrast, in mumerical ealenlations done for |w] > wep. we obiserved o vory slow
approach 1o the limiting belavior,

Renvark 2.3, We shall restrict our arguments to the case when F.o, given by
equation (2.2.3). has only two extremal points per period: s single zero. aod & single
maximum, The single zero conditlon guaraniees a unique travellng wave solution.
The single maximum condition is technical and simplifies the argnments — it s
ol really nesded, as we point out later (see remark 2.6.)

When the single zoro condition is nor sarisfied. so that the traveling wave solution
for o] <€ wee s not unigque, owr munerical experinents sull shiow couvergence Lo a
raveling wave as ¢+ oo, which depends on the initial conditions. Actually, the
arguments in this section for the case (2| > wer donot depend on Fo- hsving o single
zero, while the arguinents for |w| € we, indicate convergence Lo some Lraveling wave,
even if 71 i% not unique.

Cuase: |w| > wer. Local convergence to the smooth exact solubion.
Preliminaries.
Let uep = u,.0z) (where z = & —wi) be the exact solution introduced in subsee-
miom 2.1 — see cguations (226 - 2.2.7). Then eguation (2.2.1] ean be wrilten o
the foru
(2.2.18) "o+ (1-'? - .r-') =)
3 i ’
where v = wfz, t) = u — o, and F = Fz) = L ity — '_|..‘:|? is the fanction defined

earlior in subsect ion 2.1, We note that
min{ #) = 0, ?:_f’.

and thart ¢ must be a 2r-periodic function of 2, with Mean(1) = —u. Finally, let

Ve = ey — W= — sign{w) +/2F(z]

Be the exact solution of equation (2.2.18) correspouding 1o w,,  Le: the traveling
wave. YWe shall now assume that w < - Wy, since the casp o > o, can he
obtamed from the ssmmetrs, 0 oeqoation (2.2.1), given by o = —w, 1 = —u,
Sz = = fi—z) and o — —r. Then we can wrile

{2.2.19) v.al2) = V2F .

The armment of convergenee to the sraveling wave solution as { — oo, in this
lw| = wer case, s divided in two parts. Tn part T we show that the initial data can
be resiricted so that the solution remains positive (and bounded awsy from zero)
for all times. and that sueh solutions always break and develop shocks — with the
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sole exceptlion of the traveling wave (which has no shocks.) In part IT we construct
a (convex] Hamiltonian functional, which decreases for solutions with shocks, and
is winimized Ly the traveling wave solution,

Case: || > w... Part L
Alomg charnetoristies, cquation (2.2.18) takes the [orm

dz dve db

D] o i H —_— —|Z),
(2.2.200) = v, el p 7 (z)
This can be written in the Hamiltonian form

dz  &h dv itk
Poks — = —. — =
(2.2.21) * " W TR
with Hamillonian
(2.2.22) h = h{z. v} %u—" —'(z).

This is the standard Hamiltonian for a particle in a one—dimensional potential ficld
Viz) = = F(z). We shall nse this Hamiltonian fonmalation to derive the following
Lwo resalts;

I. We can constrain the inifial data v = #{z.0) 50 Lthat © =
vz, 1) remains positive {and bounded away from zero) lor all

(2.2.23) Limes £ 2 0, _

I1. Smooth initial data ¢ = ez, (), differenl from v.; {but con-
strained so that ¢ > 0 for all £ > 0], necessarily develop
shocks,

These two tesnles will be nsed in Part 1 o show convergence of © 1o 1, as £ — oo,

For both results, we turn to the phase plane [or the Hamiltonian system (2.2,21)
(see [igure 4). To prove the first resulr, notice that, because the characteristic
evalution is given by this Hamiltonian system, if the initial data are such that
efz. 1) = vg(z) (where v = vglz) > 0is an arhit for the system), then ¢ 2> vy for all
times (hence it romains posicive and bounded away feom 2evo.) This 5 casy to see
frim the example in fignre 4. Thersfore, we shall (from now on) assume that ¢
is greater than zero,

To prove the second result, notice that, because here we consider only values of
pogreater than wero, nll centers ave excluded, and the trajectories of (2.2.21) are
all open in the plane (though, of conrse. closed in the cylinder defined by the 27
periodicity of 2}, Several such trajectories, corresponding ro different values of
fe, are displaved in ligure 4. The point we need to make is that any two sneh
trajectories always have differene periods, for the period T(h) is given by

1 i dz

SVt JEiF)

T(h)

so that

dir 1 f‘z“ iz
dh  2V2 Sy (R+ P
This mesns thar any two characteristics with different values of b necessarily meet
{the one with the shorter perlod carches up o the other one.) Therefore a shock
must form (since two values of A at a single position = imply two distine vialues of

)

<.
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v > 0 trajectories for Hamiltonian.
35— " ; y -_

3} ...—_.....;Flow l?irectiozn .

I'icune 4. Unbounded, ¢ = U trajectories, for the system with Hamiltonian
h = %4:"' +oeoaz — 1. These occur for v = v (z) W2 iz), where
F.p = (1  cosz). (a) Critical trajectory ve,, connecting the saddle poinis
(thick solid line.) (b) A trajectory wy, slightly above critical {dashed line )
{c) Two typical trajectories v, and v, (solid lines) For the P.D.E. v +
(3 v? b eosz). = 0, whose characteristic form is gwen by this Hamiltonian
system, it is clear that: If the initial data for v are above a curve such as o,
then the solulion remains above oy for all times.

Hence Lhe only case in which characteristios do not cross is the one in wlich the
initial data lies on a contour line & = constant. However, such initial data is given
Ly

iz, 0} = /2F 1 h},
andl the condition that the aversge of v be equal to w implies that h = 11 fo..
v = vy, Hence all initial data differens from v, develop shocks.
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Case: |w| = wer. Part IL

For the second part of the argument, we need a different Hamiltouian structure,
the one given by the integral

ox 1
(2.2.24) H f (E'j - nI-“) ds.
1]

Using H. equation (2.2.18) can he written in the amillonian form

5 (6l
{2.2.25) f-,z-i(ﬁ).

We notice thal H i convex lor positive funetions o o{z) (of mean equal to

w), with a unigue absolute minimum given by v(z) = VEF = v, Furthermore,
hecause of the ITamiltonian structure (2.2.25), H is conserved while vz, () remains
smooth. On the other hand (see cquation (2.2.27) below) I is dissipated at shoeks.
Henes, sinee all o's different from o, develop shocks (as shown earlier in part I),
IT cannot settle dowr until it reaches ite minimum value, corresponding o v = 2.,

We show now (hat H decreases when there are shocks., We have;

r.‘H . 1] s
2.2.96 ¥ e~ [ pl}
(2.2.26) Z([ = [ﬁ lr]j)

Je=1 |

where we have assumod that there are N shocks per period (for some N, wilh
5, = #,(t) the position of the j-th shock, 5) < 8 < - < sy, and sy =5, + 27
(from the periodicity.) Substilute now into this last expression v, from (2.2.25).
and the Runkine-Hugoniot jumnp conditions for the shock veloeities:

s

F:—{l' +1,

where v7 denote the values of v ahead and behind the shock. Then

N e . 2
¢ = SR (E) el
= s ([(B) -deter ] <t
i=1 -
P i el -
— Eg([if‘]‘l—r 1.!‘ [J .J‘l)
I N
2221y = z Y [, <0
a=1

The last inequality follows from the entropy eondition. that states that  (therefore
02, sinee ¢ > 0) decreases fram lofr to right across shocks, This coneludes the
argument of convergenee to the traveling wave in the case ] » @
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Cose: |w

= wep. Global convergenee to the non-smooth lraveling waves.

Here we shall consider the ease with |w| £ w.p (when I = I 2 0) and gencral
initial data. We shall require that the zero value of £ be achieved ooly once per
perlod in # (for concreteness take this value to be = = (L) The reason for this
restriction — which i satisfied by generic functions Fy, = Fip{z) — is thatr when
F.,. vanishes al more than one position per period, there is wore than oue steady
solution to cquation (2.2.1), and this renders the issoe of ullimate convergenee ro
one of the steardy solutions more cumbersome. We shall also requiite that Fl. have
only one local maximum per period, since this smplifies the arguments (but this
eemdition is not steietly needsd, iy we poinl out latey, tn remark 2.6.)

We shall nge the following linctionad &, & modification of the Hamiltonian M in
(2.2.24);

(2.2.28) G'_’f_‘ (:ifuﬁ |] .'-;..) dz.
il

Notice that & is minimized poimtwise by functions of the form vlz) = +2F. =
tpz|. In partienlar, the exact sleady solution to equation (2.2.1) is the only
mitimizer of (¢ cousistent with the entropy condition for shoeks (v never jumps
upwards) and with the requiremnent that ity aversge be equal o — . This follows
friom the condition that thece is ooly one polat where Fop(z) = 0, which is the ouly
pliace at which v(z) can switch smoothly from negative to positive, Ilence there
can be only one shock switching ofz) back to wegative. The position of this shock
is then determined by the condition that ofz) + w must have a vanishing mean. In
particular, for || = wer, this last condition determines that the sign of v(z) nover
changes, and the only singularity of the solulion is a corner at the position of the
zeroy of Foo (with no shocks )

he argument for convergence to v, will be based on the fact that, alter
an initial transient period, 7 necessarily decays when vz, 0] £ v...

Unlike I7. 7 is not a Hamillonian. vet it allows us ro write equation (2.2,18) in the
following psendo-Hamiltonian form (valid wherever v 2 0):

; a4 (a0
(2.2.29) .- (I) |
where
1 Wfe=10.
o =sign{y) = L ife=10.
-1 ilve<d.

Assume now that there are N shocks per period, with s; = &;(f) 1he location of the
J-th shock, where 8 < 82 < <o+ < sxy and wyp = #y (periodicity.) Farthermaore,
introduee the functions & = k(z.t) = 2v° — Fip and g = 3 0" — [¢] £.. We notice
that

1 P | o A
w o= —h., ﬁ=|'Jr1"i.. and ﬂ'hh;:(gﬂ'w‘—aﬁi."f"cr) +JEGL}"_”}

v

where the last equalion applies away from the shorks (in particulac, il is valid when
& 15 disconlinuous due to a zoro of 1)
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Using the formulas above, we write below an equation for the tite evolution of
the unctional 7. Here. as nsual, the brackets stand for the jump front to
back of the enclosed quantities across the shock, the superseripts = are used 1o
indicate values immediately ahead and behind a shock, and & subscript § indicates
evaluation at Lhe y-th shock. We have:

e

e A das o
£ - B([ne )

i=l

- -;i_laiﬂ?,]:xi:-éi[aﬁi.

Il

2 ¥
_r—'l
N
Z ([-é-rrfl" - :--ﬂ'f.‘? P+ %nf{;“r] _ % {f_ij- ""“_f-] 5'].1)
i= i
I R
= _E[, JUE"]-d: 3 2 [”P:?ri"'
J=1
-
: U | (Ll))
Z( a(mu +2f,:,_)] A o 2},_,
i=1 y
(2230) = Si+5+5+5.
where
1 2 1 N
5 - -3 [ o(E).da-13 bR,
j=1
v gz i 2 [.3
S = 572, (ol []),.
lacal
5-; Z PRAEETY (.].'- i_r:!_, Fo) = (_-l["'j"'i"Fu) )
' ; 6 i A A
Lransenic i
andd
== 1 = l i
Sj E |:-I'T(2—.I|I _'-E'Frr)] ¥
o zero 1

Here the swm Ss is carried over all the “local” shocks (where ©F and ¢ bath have
the same sign: v v~ > 0), the sum S3 is carried over all the “transonic” shocks
(where 0™ < (} < v7), the sum S, is carried over all shocks where elther ™ or
v vanishes, and the overbars indicate the average value aceoss the shock of the

appropriste quantity.

Hemark 2.4, Notice that only the values of Fi. at the poines where o Jumps.
and #sre not shocks, comtribute to §; (that is, the places where v changes sign
“smoolhly™ ) Thix s becanse only the points whers o jumps contribute to the
integral that appears in the delinition of 5, with the sum in the same definition
subtracting any contributions that arise ar the shocks. In faet. (generically) we can
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write:

| ; A : Ey o "
Si=y | Dlerh - Y r2) | =5 [ X (i), - X (el 72), ] |

nsl F=1 ngld j=1

where 7 is & sen of indexes for all the positions across which ¢ switches sign.

It should he clear thar

o §; does nob bave g definioe sign, sinee its overall sign depends on the rolaive
sizes of F2 at the places where v crosses zero upwards (from negalive Lo
positive, so that [7] = 2) versus the places where it crosses zoro dowmwards.
so that [¢] = -2,

® On the other hand, 5; is always non-positive, vanishing only when
there are no local shocks (as it s the case for the exact rraveling wave
solution t...) This lnllows because, when ¢ 2 0 on both sides of Lhe shock:
= 1 and the entropy condition vields [v°] < 0. Similarly, when o= |,
the entropy condition yields o7 = 0.

e 5: ls always non-positive, vanishing only when v = /2. and
o= —J/IF . [or there are no transonic shocks), as it i= the case for
the exact solution v,.,.. We shall only need this last result for o= 2 25,
and vt < —/2F... In this case, the proof is quite straightforward, sinee 5y
van be rewritten in the form:

Sy =— Z (fq’i +h+2F,) [::2+|‘:2] V’IIE o4 % {r!‘l + B = gt +2r1”fjl) < ),

trans

where a = :},J.} Ve z0,and b= - (:ﬁ - vF:r) =0

o Tinally, 5 is always non-positive, vanishing only when there are
no shocks in the summation. This is obvious, sinee cach shock in the
summmation conteibites an amonnt - A —a_ A whoere Ay = 0and either!
ge=—land e =0, 00 =0l o= =1,

The argument for convergenee o the exact traveling wave solution v, {in this
w < vase) will be based on the phase plane for the characteristic equations
{2.2.21), corrcsponding to the Hamiltonian % in equation (2.2.22)  with F = F;.
Thiz phase plane, displaved again in figure 5. is partitioned nto two domains by
the separatric b = U 2 domain D containing (he closed periodic orbits, and
its complement (7)) containing the open orbits. We will assume here that
F.. has a single maximmm per period. so that there is a single critical point i D (2
center), with all the other orbits being closed and periodic {as shown in figure 5.)
We shall first argne that:

(2.2.31) The asymptotic behavior for the solutions to (2.2.18)
. cannot include any values in the interior of the domain L.
The argument for this goes as follows:
A, Firsl we note that: any two characteristics stactiog v the ioterdor of D
cross in [inite time  even il they lie on Lthe same contour line {orbit) for .

Furthermere: for any compact subdomain [, of 1. the crossing fime can
be uniformly bounded.
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WTITE:
N N

Y loril = Yo kd) ) =5 [ X (el #2), - S (#2), |

Rel j=1 nel =1

_‘]'1 —

[ ]

where D is a sel of Indexes for all the positions across which v switehes sign,

It should be clear thad

* 5y docs not have a definice sign, sinee (s overall zign depends an the relarive
sizes of FL at the places where v orosses zoro upwards (from negative to
positive, so thal [#] = 2) versus the places where It crosses zero downwards,
so that [o] = -2,

o On the other hand, 55 18 always non-positive, vanishing only when
there are no local shocks (as it is the case [or the exact traveling wave
solution v} This follows beeasnse, when ¢ 2 0 on both sides of the shock:
# = 1 and Lhe entropy condition yields [v*] < 0. Similarly, when & = =1,
the entrapy condition viclds [+°] = 0,

s 5 is always non-positive. vanishing enly when v = /2F . and
o™ = =2, (or there are no transonic shocks), as it is the case for
the oxact solution v.,. We shall only need this last result for o= > /ZF.,
and v = —2F . Tn this case, the proof & quite straightforward, since S
can be rewrilien in the [orm;

Z ((a bbb 20/ Fup) (0 + ) W/ Fur :i {a 1 61 4 2087 | ga“f-]) <0,

lrans

where o LS VE =0 el b= - (L oy F.,) > L
V2 V2
o Finally, 5; is always non-positive, vanishing only when there are
no shocks in the suwinmation. Thi= s obvious. since each shock o the
summation contribules an amount oo A —o_ A, where AL = 0 and cither:

g ==landa. =0, ore, =0and o_ = 1.

Ln
e
]

The argument for convergenve to the exact traveling wave solulion e (in this
@ = owee case) will be based on the phase plane for the characteristic cquations

This phase plane, displayed again in figure 5, is partitioned into two domains by
the separatriv A = 0: a domain 1) containing the closed periodic orbits, and
its complement (D) containing the vpen orbits, We will asswwe here that
Fep has a single maximum per period, so that there is a single critical point in 77 {#
center). with all the orher orbits being closed and periodic (as shown in figure 5.)
We shiall fiest argue thal:

The asymptotic behavior for the solutions to (2.2.18)

g
(2:231) cannol include any values in the interior of the domain 77,

The argument [or this goes as [ollows:

A. First we note that: any two characteristics starting in the interior of £
cross in finite time — even if they lie on the sume contonr line (orbit) loc f
Furthermore: for any compact subdomain Dy of D, the crossing time can
be uniformly bounded.
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Using the formulas above, wo write below an eguation for the rime evolution of
the Inctional 7. Here, as usual, the brackets stand for the jump [ront 1o
haek of the enclosed quantities across the shock, the superseripts + are nsed 1o
indicate values immediately ahead and behind o shock, and a subseript § indicates
evaluation at Lhe j-ih shock. We liave:

dG e ds;
= i ;(f, ahhuds 4 m})
2o i N
- f o (FL). dz - 2 Y [0 F2], +

j—'l

1 1 c e ST
([Err - n-nr*"’ Fop + Eﬂf‘_fr]J e {f-‘, +f‘j] '.Ir‘]J)

o 1 il
2 |
.[. a dz - Z[‘”’m, B

e e

5; -+ 52 -'.—S;; = 5.| f

e 'Iu I
I'I-F"_ "l-!
"‘ l:t:'||-l- == bl =

(2.2.30)

whore

o= f {f—,,} iz — = Z |7 F,
: | VI
Sz 73 Y (el [#*])

lecal
_';;1_ Z- {'-' i1 (‘E e - ."J) - (—%F*k}‘:,)} ’
Lransonic i
aned
1 b [
5, = E |:,:';r (’—r';—:—F‘r)] ;
R 24 2 1

Here the sum Ss is carried over all the “local” shocks (where ¢t and ¢ both have
the same sign: ©7 v~ > 0], the sum 93 is carried over all the "transonic™ shocks
(where 0™ < {1 < v7), the swm Sp i carried over all shocks where either ¢ or
v~ vanishes, and the overbars indicate the average value across the shock of the
appropriate quantity.

Renark 2.4, Notice that only the values of F.. at the points where o jumps,
and are not shocks, contribute to 8, (thar is. the places where ¢ changes sign
“goothly” ) This is becanse only the points where 7 jumps contribute o the
integral that appears in the delinilion of 5, with the sum in the same definition
subtracting any contributions that arise at the shoeks. In faer. (generically) we can
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Bounded trajectories for Hamiltonian.
2.5— ? .

T L
- 2 2
o W

FiuRe 5. Bounded trajectories for the system with Hamiltenian h = £ 0% =
v 2 Faplz), where

eoss — | These cccur in the region |v] < n{z]
F.. — (1 =cosz). The critical trajectories 7 — %, connecting the saddle
points (thick solid lines), and several periodic orbits are shown, in addition
to a couple of unbounded orbits (dashed lines.) Motice that, in cases where
F.. has more than one maximum per period, the bounded orbit region will
be more complicated, with saddles and more than one centzr in it.

Thiz is obvious from figure 5. A formal arpument goes as follows: let 3 =
=p(#) and 25 = 20(¢) Le any two charactoristios corresponding to orbits in D,
with z; the characteristic for the outermost orbit in 2. Then both z; and
2 are periodic functions of time, with max(z;) > meas(z) and min(z ) <
min{z:). Then max(z; —z2) = max(z;) — max(za) 2 0 and miniz; —22) £
min{z;} — min{zz) < 0. so that z; — zz must vanish somewhere, in fact:
at least twice per zy-period. Thus: a uniform bound on the crossing rime
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iz given by the maximam of the orbit periods over the domain D Note
tliat: as the distance of D, Lo the boundary of D gets smaller, the
crossing time bound goes to infinity, hecanse the orbit period grows
nnboundedly as the separatrix is approached (points on the separairix ake
an infinite amount of time o move from saddle to saddle, while points inside
I move om orhits with @ finite period.)

B. Using the result in A, we argue now that any pact of the nitial daia con-
tained in a compact subdomain D, of B2, ceases Lo Influence the solution
after a finite time. This second result, of course, mplies (2.2.317,

The argument here is as [ollows: suppose thal there is a charvacroristic
conecting some point on the solotion with the initial datain 2, Bul then
soune neighborhood of this point (possibly one-sided, il the point is on a
shock], connected with the initial data in D, by a “beam” of characreristics,
wortld exist. This is elearly impossible after the time given by the unilor
bound in parl A above,

REmark 2.5. The resnlt in (2.2.31) i= casy to visualize graphically (in terms
of what the solution to equation {2.2.18) does s it evolves in time) using (he phase
plane for the evolution by characteristics in (2.2.21) as illustratedd By Rgure 5.
It should be clear that any part of the solution curve @ = oz, #), contained inside
D, will be steetchied and “rolled up” (as illostrated o fizure 6) by the chavacterisiic
evalution along the periadic orbits of the Hamiltonian

= %t:"' S

This then leads to maleiple valoes, which are resolved by the introduetion of shoeks,
Tt should also be clear that, in this roll up process, the upper and lower envelope of
the zolution curve will be produced hy stretehing of the parts of the inirial sohution
curve closest to Lhe separatrix i 0 — which will then be the only pans surviving
after the shocks are introduced,

Notice that this is 2 very “officient™ mechanism for the elimination of any part of
the solution eurve contained inside £ For all practical parposes, the slimination
of these parts accurs in a finite time (roughly, the average “turn over™ rime for
the periodic orbits), after which only 8 very small region near the critical level
curve i = 1) can remain, As pointed oul at the begioning of this subsection, this
fact is clearly seem in the numerical experiments we conducted. with @ very sharp
separation of scales betwsen the convergence Limes [or the cases || = g and

Jat] < ey

Remanrk 2.6. The prior remark should make i clear that the key element in

obtaining (2.2.31) is the existence of a small “band” of periodic orhits in £ close
to the separatriz, This is true even if Fop has more than ewo extreemad poinls puer
pericd — leading to several eritical points inside I, nol just a center,
The critical thing to notice is that the initial data solution curve v = e(2, 0) mnst
b periodic in 2, Thus it is cloar that: if any part of (his curve ends up inside
I}, then there will have Lo be points where the curve crosses the scparatrix A = 1)
going from C(D) o D, and vice versa. The neighborhoods of these poinrs inside £
will them he stretehed and “rolled up™ by the chiracteristic ovolution, so (hal they
are 1he only suwviving parts of \he initial data inside D (alter sowe time. ) Henee
(2.2.31) will be valid, cven Il F.,» has many extromal points.
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Curve roll up by characteristic flow.

1.5}
1t
0.5}

V o Al (.- R R TRy
05}
1t
15}

20 : : i . : :

0 1 2 3 4 5 6

F4

Frovie 6. Solution curve roll up by the characteristic flow with the Hamil-
tonian k = L ¢® + cosz 1. and initial condition #(z.0) (. The figure
shows the initial conditions (dashed line) and the curve, as cvolved by the
characteristic flow, for time | = 27, The parts of the curve near the saddles
stretch to fill the critical # = 0 orbit (as ¢ — =c). which is the only thing
that survives after the shock is put in place.

Uhe result in (2.2.31) shows that, alier a long enough time, the solurion can cross
the line ¢ = 0 smoothly only in an arbitrarily siall neighborhood of = = 0, where
F.. vanishes (notice that o crossing is nesded when o] < w.,, sinee the condirion
Mean({v) = —w cannot be satislied il either o > o = /25 or v < —r
=200 I Lthere is such a crossing, it must be npwards, with o relarging 1o
negarive values throngh a transonic shock.  Moreover, the solution needs ro lie
enlirely on (D) or ab most, i within 0, in an arbitrarily small neighborhood of
the separatrix i = 0.

COnee in the situation deseribed in the prior parigraph, 5, i equation (2.2.30)
becomes arbitrarily small (see remark 2.4). Since (as shown earlicr) Ss, 54, and 5
are non-positive. it follows that the lunctional ¢, defined in (2.2.28) can no longer
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mereases it remains constant for solutions that are either smooth or only have
shoeks from 28, 1o — 2F,,, anil decreases for all other solutions, Furthermaore,
the same argument we used for the case |w| > wee can be used to show that any
parts of the solution (in C'(D}) not Iving on a single eontour line A = constant,
necessarily break and form shocks. Henee, as long as o(z.4) stays away from v,
(7 decreases. Agaiu, we conclude that the long time (t + o0) asymprotic limit of
the solution v = v(z, {) must be given by vz (2) (which minimizes .}

3. Two Forcing Modes.

In this seclion, we study the effects  on the solutions to equation (1.1.1) - of
a forcing term consisting of the sum of two traveling waves of different speeds. For
concreteness, we shall only consider the case in which one of these speeds is zero,
corresponding to a perfect resonance, and we shall ohserve the changes in behavior
as the other speed Tanges from zero to infinity. To be specifie, we will consider the
eguation

u + (%u!)f = flz, 1),

Sz t) = gulx) + galr =024}

{1 is a constant, g, and g are 27 periodic smooth functions with vanishing mean,
and i = nix, 1) is 27 periodic in space, with cero mean. We will asenme 3 > (.
since the case ) < 0 can be reduced to this one ysing the symmetry: = — —ua.
u— —t, and f -+ —f.

(3.3-1] where

When 12 s small, the two forcing modes oscillate at nearly the same [resomant]
frequency.  Our interest in this situation arises from the general question of the
effects of the superposition of many near resonant interactions in general systems.
In order to estimate the combined effect of Lthe interaction of a mode with very mauny
others, one needs Lo assess the degres of phase coherence among the corresponding
forcing terms. Such assessment depends fundamentally on the consideration of
three issues:

L. How close to gach other are the linear frequencics of the forving

modes.

2. How much these linear fregquendcies are allecied [“renormalized”)
(3.3.2) by nonlinear effects. . . o

3. How often do strong [intermittent] nonlinear events effectively

reinitialize the phases of the various forcing modes. Also, do
these reinitializations tend ro randomize or rather further cor-

relate the various phases?

It should be quite clear that these guestions arc not casy to answer, Moreover,
once answers are assumed (see next paragraph), one has only defined the nature of
the forcing; its efferrs on the evolution of the foreed mode still need to be assessed.
Furthermore, since the forcing arises from combinations of other modes which are
also similarly forced. the problem has and enormously complicated nature.

Attemprs to bypass this great complexily ofien rely on universal assumptions, such
as randomization of the phases and separation of the linear and nonlinenr seales,
which are very difficalt to justify. Typically, these closures are sometimes successful
— in that their predictions agree with the observed behavior of the system under
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study — and sometimes a radical [ailure, with the reassons for this disparicy open
to debale.

Here we isolate the issuc of the response 1o a given furce, by preseribing the form of
the forcing term. Moreover, we consider only two forcing modes, and prescribe their
[orm and frequency as if they were not subject to nonlinear interactions themselves.
By s0 reducing the complexity of the problem, we are able to resolve some questions
regnrding the elfects of Lhe degree of roherence of the foreing modes on the behavior
of the foreed mode.

The plan of this section is the following: First we deseribe certain peneral
features of the solution to equation (3.3.1). Then we study separately two liriving
regimes, corresponding Lo £ either very large or very small. In each case we study
(analylically and mumerically) the behavior of the corresponding solitions.

Let us start by noticing that Lhe forcing term in (3.3.1) is periodic in time, of
period 27 /01, Since (3.3.1) is dissipative —— though only through shocks, which are
wot necessarily present all the lime — we expect thar the solution u(r. £) will
converge to n periodic pattern of the same periodieity. We have cheeked
this mumerically, by computing the quantity

2z =
(3.3.3) )= [ (u(w. -+ E?—T-J — wle, r}) dr,
0 L

In all the numerical experiments that we performed, D decreased rapidly, becoming
effeerively zero In about one or two periads of the forcing function.

W shall now distinguish two distiner extreme regimes, with the general case be-
havior interpolating between these Lwo, OF the two ferins in the forcing, g = ¢ (#)
is in resomance with niz. 7). since the latter has a vanishing mean (hence sero linear
frequency in the unforced case.) On the other hand, the foreing g2 = ga{z — 02 £) will
Le clost to —or far from resonance depending on the size of . When 2 3 1, we
expect the leading order offect of ga(x - §2¢) on (e, ) to cancel, due Lo averaging,
When (0 < £ < 1. on the other hand, the effect of @ can no lnger be neglecred. In
this seconud ease we expert g and go to combine inlo a single, quasi-steady [ocee,
vielding a quasi-steady solution v = ulr, 04#) — very much & modulated version of
the steady solotion to (2.2.1), studied iu section 2. for w — (. Namely, in this lasi
case we expect;

(3.3.4) (1 3) =)+ gale—08).

.
That this is roughly the case. yor with some intoresting qualifications, will become
clear in the analysis that follows.

3.0, Case: 1 = 1; g far away from resonance. In this subsoction, sy
show that, when 2 ds large, the solution w = u{e,f) o (3.3.1) 15 close to the
solution that one would obtuin if the only forcing term were gy (x) — char is (to
lesweling, order) g2 has no effect. To see this, inteoduee the stad] parieneter



T4 F. MENZAQUE, R R. ROSALES. E. C. TABAK, AND C. V. TURNER
Then equation (3.3.1) takes the form

(1.3.5) w + (%u“) = g1 lt) + g2l — 7)),
x

t

where 7= - is a fast time variable. We now propose the following asymprotic
£

EX[ANSION:

{4.3.6) u=uglz)+ewmir. 70+ OF),

where e dependence on 7 15 27 periodic. Then. at leading order. copration (80350
wields

g L L OGx) AGy (e =)
ST - —uy | =gle)+gle-1)= L ———
L J a,r + 3 Uy : 5'1.{-5} y—{‘[ T} Or Ar 3
where ¢ and Gy are the inegrals of g; and gz, respectively (unignely defmed
by the condition that both should have a vanishing mean.) We will assume Lhe
{peneric] condition that 77 has a single minimum per period.

Integrating equation (3.3.7) over one period (in 7], we obtain

(3.43.8) (‘! uj) = G () =  wplr) =+ V2 (I +0G(r)).
2 P fr

where [ = — min((7, }, the solution crosses {continuously) from the negative to the
positive root at the position of the minimnm of Gy, aod las g shock (Juonping from
the positive to the negative mot) at & position determined by the reguirement that
the average of ug = wylc) should vanish, This leading order solrion agrees with
the solution thar one would obtain if the foreing consisted exclusively of gy (soe
section 2, for w = 1)

Substituting (3.3.8) into (3.3.7) we then find that
(3.3.9) i (r, 7l = —(Fa{r —7) = plx],

where p = plr) 5 8 2r—periodic function of vanishing mean, that is detormined ar
the pext order ju Lhe asvimptoule expansion. Numerical cxperiments — not shown
here  corroborate the resules of this asymptotic analysis.

3.2, Case: [} < (2 1; quasi-steady foreing. When O < 0 <0 10 we can
{in principle) think of the solition to equation (3.3.1) as frozen in line near cach
value £ Ly, This yishls a quasi steady leading order solution u = iz, 7). where
ule, $2la) is given by the steady state solution (seetion 2, case w0} to the case
with a single foreing mode, with f = fir) -~ o (r)+gle =0 i), In this subsertion.
we shall discuss this guasi-steady solution in some detail.

We begin with o simple asvmptotic expansion that woplements the idea in che
paragraph above, Using £ as the small parameter, we wrire

(3.3.10) ulie, 1) = uole, 7) + Quy (e, 7)1 OG0,
whers the dependence on 7 is 27 peciodic and © = §H is a slow time variable,

Then, at leading order. {3.3.1) viclds

1 4
(3.3.11) (3 'Hﬁ) mle) +gulr =7},
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Thus

(3.3.12) wn(r. 7} = £/2 G 7},

where (7 = (. 7) i= defined (for each 7} by

(3.3.13) EI-E = gylar) + gala - 1) and min (@) =10.
e <2

In each poriod 0 < ¢ < 25 Lhe solulion crosses {continuously ) from the negative Lo
the positive root al the point = = i, {7) where & = 0, and has a shock {(jumping
from the positive to the negative root) al a position = = s(7), chosen so that the
e of wy) vanishes,

The solution (3.3.12) above works ns long as & has a single minimum per perioel.
in which case 7 = Tit) and 5 = s{7) are well defined and depend smoothly
on 7. However, there will generally be some special times, T = 7., at which this
fails. Generically & will have spveral local minimums, evolving i time, with one of
them smaller than all the others. The (generic) special times oconr when two lneal
minimums exchange the property of being the global minimum. At these Times 2,
ceases Lo be smooth, jumps discontinuously from one position Lo another, aod Lthe
expansion in (3.3.10) becomes inconsistent and [ails,

REvARK 3.1, As poinled out at the heginning of subsection 2.3 (snd remark 2.5)
the convergence of the solution 10 a steady state — when the Forcing is time inde
pendent s gonerally very fast. Thus, we can be pretty suee thar (3.0.10) will
deseribe the behavior of the solurion away from the critical times 7. The question
{which we will address below) now becomes; what happens for 7= 7.7

On eaech side of a critical time 1., the expansion in (3.3, 100 is valid, but the position
of the shock (x = s(t)) and the zero (& = 1, (7)) jump across 7 = 7., implying
a discontinuons glohal change in the solution w. Hence, there i= A set of discrete
rimnes when the solution i needs to wdjust “rapidly™ from one quasi steady stute fo
another (({1) away) ome. 'The existence of those adjustment processes, which
we will call “storms”, raises the following questions:

1. What i the time scale [ic., the duration) of a storm?

2. During & storm: are there significant effects o the energy
exchange belween the forcing function f = f(r. f) in (3.3.1)
and the solution u = wie, £)7 That is Lo say: is the work per

(3314} unit time g
W :f Judr,
f

1l
done by Lhe external foree, significantly affected by the storm?

L

REVMARKE 3.2, Notice Lhat the total enerey (as lollows from equation (3.3.12})

i ix
(3.3.13) ko= / _]—t.l:"",f_I. 7 da =/ Gl rhde
o 2 0

is a continuous fanetion of + for the quasi-steady solution, even though wy itself
is not. This implies that any extra energy exchange between w and the forcing f
during & storm will need to be matched by extra dissipation over the course of the
SLOrIm.
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REMARK 3.3. Awuy from the storms, the asymptotic sohirion in (3.3.10) shows
thar rhere is a leading order balance between Lhe work W done by the forcing §
on the solution w, and the energy By dissipated ae the shocks. Namely:

(3.3.16) Ey =Wy =0[(0).

This, of course, is in agreement with Lhe [act that the rotal enerpy E is a slow
function of rime (£ = E(7). as shown hy equation (3.5.15).) This suggesis the
following extra question, rolated to 2 in (3.4.14) above: How is the balance in
(3.3.16) affected by a storm?

Before attempting o answer these guestions analytically, ler us set up a simple
exumple, thar will help botl make the discussion concrete, and verify its vesults
through numerical exporiments, Let us select a forcing term of the form

{3.3.17) Flz, t) =sin{z) + 2 sin(2({r — 08},
in eyuation (3.3.1). Then , as defined in (3.3.13), is given by

{3.3.18) = /-“I.”rl{:r = (1) - (coslx) + vos(2(x = 24,

where = max{cos(x) + cos(2{x = 0#))). The eritical times at which the zoro of
L

G jumps are given hy

(Zn+1)m

Sak19 b =

Gl " 20

where n 15 an integer. At these limes

(3.3.20) (Gr. 0, = é (1—deas(z)) .
and

(3.3.21) wol, 21,) = :% [1 - 4cos(z) .

with two candidare crossings of sero.

At the critical times £, [of which there is one per perind). there are two solutions
uger) of the form (3.3.21), in which ny switches from negalive to positive ar one
of the zeros, has a comer at the other, and switches once from positive o negative
through a shock, at a position determined by the condition that ug has a vanishing
average. The gquasi-steady solution given by the asymplotic expansion in (3.3.10)
approaches one (or the other) of these two solutions as ¢ 3§, Trom below (or
ahove )

Biesmark 3.4 In addition to the two special solutions mentionsd in the prior
paragraph, there is a full one parameter family of solutions (of which the two
salutions just described are extreme cases.) In this family, both zeros of wy are
usedd for upward (negative Lo positive) erossings, and thers are consequently two
sharks switching the solution hack to negative. The posirions of these two shocks
are related h.'n' the constrainl, on the average of ug, which leaves one froe parameter.
The relevance of this one parameler family of sohtions is that, during a “storm™ . the
actual solution u(x, ) sweeps this fawily, one member at a time, at an intenpediate
rate, fhster than O 1), bat slower than 1], Before showing this curious resuli
through an asvmprotic expansion. we illnsrare it with & wwmericos! solarion.



THE FORCED INVISCID BURGERS EQUATION ki

Figure 7 displays the [numerical] solution to equation (3.3.1) with the forcing given
hy (3.3.17), starting from the asymptotic solution shortly before the eritical time
iy, for a value of the frequeney 9 = 0.01, not exceedingly small, The dotted
line gives the envelope for the asymptotic, quasi-steady solution wali, 1) (fe: the
curves n = ++v26.) In this figure we can see the actual solntion » = i, t)
swilching its upward crossing point from one cevo of Gz, {141 ) to the other, through
a relatively fast transition, involving the development, growth, travel and eventual
disappearance of a second shork. During this transition. the solntion sticks very
closely to the envelope of the quasi-steady solution, The slight disagreetnent, most
visible in frame (&), is due to the finite size of Q1 as 0 gets smaller. the full “storm”
takes place with the envelope nearly constant, and we should compare it with the
“eritical” eavelope (that has two zero crossings per period.)

Figure 8 shows the total energy of the solntion as 2 [unction of time, for a [ull
period? in time 7 /41, and four values of the [requency, from (8 = 1/50 to (F = 1/400.
Note thut this fgure shows the energy converging to a function of time with u corner
at iy, as the frequency ! tonds to zero (the limit is the funetion given by equation
(3.3.13), for this special ease when & is given by {3.3.18).) Such a cornered energy
function corresponds to an instantancous storm, which changes the phase of the
solution discontinuously at § = #;.

A more tharough understanding ol the energetics of a storm i gained by looking
at either the epergy dissipation rate £y = Ey(f] (caused by the shocks). or the
work Wy = W{t) done by the forcing (see figures 9 and 10). Both show a marked
spike during the storm, approximately duplicating the regular amount of work
and dissipation. The doubling of the energy dissipation rate is casily explained as
arising from the appearance of an extra shock during a storm, of a size comparable
to the regular one, The close agreement between the euergy dissipated and the
work perfurmed by the forcing, on the other hand, can be cxplained by the slow
evolution of storms, faster than the regular O($2¢) rare, but clearly slower than a
Nt) rate. Hemee, at any particular time, the energy inpul and outpur need to be
in halanee to leading order. In other words: even during a storm the solution
is quasi—steady (as we will show below.)

The pesines just raised bring us back to the natural gquestion ol what is the time scale
for & storm (namely, question 1 in (3.3.14).) Quantilving this time—scale will tell us
how significant, storms are from the viewpoint of energy exchange: fast storms do
not have time to aflect the enorgy exchange siguificantly, while slower storus do.
Notice that the storms have a very definite duration in figures 8 and 105 they start
and end rather abruptly. Measuring these duratrions suggests that they scale witk
the square- rool of the frequency f1 Uhat this is precisely the ense ean be nferred
from the following asymptotic argument:

Cousider, during a storm™ an asymprotic expansion of the form
{3.3.22) iz, ) = wale, T)+ day e, T) + [4%),

where T = &t - t.), and @ < 4 < 1is a small parnmerer to be determined (4
gives the storm time scale,) The right hand side f = flr, 7) in cquation (3.3.1)

“Mote that, becawse ga i {331 Tk has period 7, in Lhis case the long time asymplotic sulution
iy (i 1) b period n /80 in time ot 2S00, ad ia Llie goporal case,
3Taking glace for £ 5 1. = 7o /00 where 7o iy delined below equation (L3.L3).
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Solution for time: | = 0.480 [rfia), with o m 0.01 Baolution for time: t = 0,500 =), with u o= 001
e — | ohed ine: geaek sy

Solution for time: 1 = 0.510 (w/o), with o= 0.01 Solution for time: t = 0.520 (=), with w =100

Dashed me: guesksioady Dashes line: quaslsicady
it aealoow.

bl

1

H o

-1

Solutlon for thma: t = 0575 (rba), with o= 0.01 Salution for time: | = 0.584 (nfu), with o= 0,01

3 T T T 3 T T T
Daded Grour: gt stimacty Daateied B il sinidy
4|, setution snvoicos o mtution enveisos

FIGURE 7. Asymptotic ¢ — oo solution to the equation wy — [}2 u?), =
sin(x) + 2sin(2(x = 1)), with 2 = 0.01. Time slices of the solution
are shown for # near the critical time ¢, = 7/(20), when .. has a dou-
ble zero. The asymptotic solution is periodic in time, of period 7 /0.
Because 11 is small, the solution i5 quasi-steady at all times. The plots here
illustrate the evolution in the time scale ©(+/(1t), with corrections of order
3(+/11), for ¢ near t. (when a double shock arises.) For | away from t, the
solution is close to the unique quasi-steady solution of the problem. For |
close to [ the solution evolves following the one parameter family of quasi-
steady solutions possibie when L = (.. Twao shocks arise in this stage.
Left to right and lop Lo bottom, the figures show the solution (and the
envelope | 2F., for the quasi-steady solution, in a dashed line) for the
times: (a) + = 0480 (x/Q), (b) ¢ = 0300 (7 /), (e) i = 0310 (=/€2), (d)
f- 0A20(m ). (&) £ =0.573(x /), and (F) ¢ = 0.584 (=/0})
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FiGURE 8. Energy F = K{t) — shown over one period 00 < (@ /=)t = | in
time — for the t — 2o asymptotic solution for the equation ; + (£ n¥), =
sinfa) + 2sin{2 (r — 121)). Left to right and top to bottom, plots for the

cases (1 =1/50, 2= 17100, ©2 = 1/200, and £t = 1/400 are shown.

can expanded in the form
g .
(3.3.25) flz. 1) = e 7)) 4 EJ’ FAE, )i

where = = 02, as in the expansion in (L3510}, Substituring (31.3.22) and (3.3.23)
into equation (3.3.1) we obtain, tw leading order:

(3.3.24) uolr, T) = £/2G(2),

where O, = Glr, 7.}, nnel (7 05 a8 in (3.3.13). Beenuse & = 7, generienlly (7. will
have two zeros per period, and the dependence of wy on T is through the position
of the two shocks in (3.3.24). That is: ue st be a member of the sne parameter
fanily af solutions that the steady state problern has al the critieal times (see
remark 3.4), with the parameter a funevion of T
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Energy Disgsipation Rate.
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Fiaune 9. Energy dissipation rate by Elt) — shown over one penod
0 < (fxi < 1 in time — for the { — oo asymptotic solution for the
equation w; + (3 u*); = sin(z) + 2sin(2 (z — 0#)). Left to right and top
to bottom, plots for the cases 0 = 1/50, 1 = 1/100, {} = 1/200, and
! = 1/400 are shown, The width of the dissipation spike near the time
where the shock in the guasi-steady solution changes location, behaves like
At = 1/4/01. The energy dissipation rate for the guasi-steady solution is
shown by the dotted line.

At the next order in the expansion we have, on each side of e equalion:

(3.9.25)

{t,
A (g + (o)) Ff'fr{f-fr-J.

which requires § = V11 in order to balance, Hence the (intermediate) time scale,
valid during storms, is given by T = VI, as suggested by the numerical meperi-

NS,

Answers to the guestions posed earficr,
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Waork done by lorcing. Work done by foreing.

in w 0L02 ; w000

& 0.8 1

u:a 1 R 02 04 m.
{wf=)t

A 02 a4 [
[t

Work done by forcing. Waork done by forcing.

o =u,|‘:t|]5 = GU0O25

IE; o T [ ER 0z 7] nE ] 3
{eavm) 1 fud=)t
FicUuRE 10. Work done by the forcing Wy = W;(f) — shown over cne
period 0 < ($/7jt < 1 in time — for the { = oo asymptotic solution for
the equation w; + I_%u: ). = sinfc) + 2sin{2(x - 1)), Left to right and
top to bottom, plots for the cases 12 = 1/50, £2 = 1/000, £ = 1/200). and
0 = /400 are shown, Note how closely the work done and the dissipation
match, as a consequence of the fact that the solution. at all times, s fairly

close to a quasi-steady solution.

We can now answer Lhe yuestions that were posed carlier in this subsection as
follows:

A, Starms have a tvpical duration Af = 1/, evalving on
an (intermediate slow) time scale T = Tt (question 1 in
(3.3.141)

B. During a storm bolli: Lthe work per unit time Wy by the
forve f, and the energy dissipation rate F; by the shoeks are
(ranghly] twice as lorge as their values away Drom a storm,

(3.3.26] 4 since the solution has two shocks during a storm. and only

ane away from it (guestion 2 in (3.3.11).)

Combining Lhe answers in A and B, we see that the overall

excess dissipation caused by a storm is ({1/+/11).

1. Storms alter the balines belween dissipation and work given
by (3.3.16), replacing it by

E.— W, =0(V11).

0
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As pointed out in the introduction to this paper. the fact that the elfecis caused by
2 storm scale with /0 not €. may have important conseguences when considering
the effects of a complex set of near-resonances (something that cseapes the scope
of this present paper. and which we plan on investigating i fature work, |
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