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RESPONSE TO RESONANT AND
NEAR-RESONANT FORCING IN A SIMPLE MODEL
FOR NONLINEAR ENERGY CASCADES

Fernando Menzaque *  Rodolfo R. Rosales |
Esteban G. Tabak ! Cristina V. Turner §

Abstract

The response to resonant and near-resonant forcing is studied in a
simple model for nonlinear encegy cascades. The model is the forced in-
viscid Burgers equation u, + (ii) = f. The nonlinear term represents
simultanesusiy energy transfer a.ndxdissipa:inn mechanisms in more com-
plex systems. The foree f is tuned Lo mimic resonant, near resonant or
far from resonant forcing, due either to sources external Lo the aystem, ar
to nonlinear interaction with degrees of freedom not represented by the
variable u. A rich phenomenology is found as f switches from regonant Lo
son-tesonant, including sharp phase transitions and intermittent events
asgociated with enbanced energy transfer,

1 Introduction

Large systems in Nature, such as the Ocean and the Atmosphere, have their
energy content distributed among many internal degrees of freedom or modes,
such as waves and eddies, Energy typically flows into the system from external
sources, which act preferably on some of its degrees of freedom, gets distributed
throughout the system via nonlinear interactions, and is eventually dissipated,
often through nonlinear mechanisms, such as breaking waves and turbulence.
Thus the system can be said to be in o statistically steady state, though not
one of thermodynamical equilibrium, but rather one characterized by permanent
energy transfer among scales.
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The description of such forced and dissipated systems invelves a number of
mathematical challenges. A significant one is our incomplete understanding of
resonant energy exchange. When a set of modes has various linear lrequencies
of oscillation, its modes can exchange energy efficlently only if the subsews of
modes providing energy and those receiving it have approximately equal com-
bined frequencies. Otherwise, their relative phase would oscillate réipii. and
the effective energy exchange would be greatly diminished. Ferfect [requency
mateh is denoted resonance; near-resonance and non-resenanee are defined we-

cordingly.

Two problems appear though: that the boundary between near-resonant
and non-resonant behavior is somewhat vagee —and dependent on the level of
nonlinearity present—, and that the combined effect of many near-resonances is
hard to evaluate, In this work, we describe a simple model where these issucs
can be explored in depth, and use it to show that the way a syscemn responds
to near—resonant forcing can be far from trivial. The model that we shall use
is the foreed inviscid Durgers equation:

ug+(%u2)=:f[a;.5), {1)

where [ = f(z, ¢) is a smooth given function, periodic {of period 27) in space
and vanishing mean, and the solution u = ulr, t} is also periodic and has zero
mean.

Here the dependent variable u(x, ¢) represents o mode (or sed of modes) with
linear frequency w = 0 (as follows from the zero mean condition) On the other
hand, the externally imposed foree fla, £) represents other mnodes of the syslem,
which (depending on the scale of their dependence on time) will be close or far
from resonance with wu.

The nonlinear term in (1} has two combined functions: to transfer energy
among the various (Fourier) components of u, and to dissipate energy at shocks.
Thus the “inertial caseade” of large nonlinear systems and their nonlinear dis-
sipation are modeled by a single term. This not only implies a Lig gain in
simplicity, but could also in fact be o racher realistic modeal for fluld systemes,
whose dissipation is alimost invariably associated with some form of wave brealk-
ing. )

The plan of this peper is the following. lo section 2, we mtroduce the
wodel, show its relation to real systems, and discuss some of its eleinentary

properties. In section 3, we study the behavior of the solutions when the force
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f is unimodal; in particular, we show that a sharp boundary divides resonanl
{rom non-resonant behavior, a boundary that can be characterized as a phase
transition. Finally, in section 4, we study bimodal forcings; here the dominant
leature is the appearance of intermittent events, that we denote “storms”, where
energy transfer is highly enhanced,

The tone of this paper is mostly descriptive, with the emplusis placed on the
relevance of the striking behavior of our simple model to more general systems.
For the proofs of many of its resulls. as well a3 for & more detailed acc;nllnt of

the numerics, we refer the reader ¢o 12].

2 The Model and its Elementary Properties.
When linearized, equation (1} becomes

u = f{z, t). {2)

Then the force f may be said to be resonant when it has a nonzero bemporal
mean, and hence makes u grow secularly. If, for concreteness, we consider
forcings of the form
Sz = A cos(ku —wi), (4)

then f is resonant when o = 0, near-resonant when c is small, and non-
resonant when w is large. We shall see below that the apparently tenuous
distinction between near-resonant and far-fram=resonant behavior can be made
quite sharp for the model in (1),

It may appear ihat near-resonant behavior can be characterized at least
asymptotically, through the introduction of a small paranieter ¢ measuring Lhe
departure from resonance. The resulting equation should be

ik @ u'*l = (e, o), (4)

The reason for the factor € in front of the forcing term follows from considering
4 quasi-steady approximation to the solution to {4), namely:

ufz)mlﬁfﬂs. et)ds.

This indicates that a slow forcing of size Oe*) generally induces a response of
amplitude ¢ in u. Hence any force stronger than € in {4) would render its own
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time modulation irrelevant, since the indoced nonlinearity would act on w muoch
faster time scale, thus effectively freezing f from a dynamical perspective.

However, the €'s in {4} can be scaled out by the simple transformation { = ¢ 1,
u = eii. Henee near-resonances in (1) cannot be defined as an asymptotic limit
invalving a small parameter €; if there is o distinction batween nenr resorant
and nonresonant forces, it will have to arise from a foite bifurcation in the
behavior of the solutions to (1) — which in fact occurs, as we will show below.

Equation {1} develops shocks, which meve at speed ¢ = é— {u™ +u" ) and
satisfy the entropy condition a* = u~ < 0. Hence the energy

B = [ jutta, Odo

has typically a source given by the forcing and a sink at shocks; its dynamics
is given by
a8 1 dn .

i E(ﬁ[“]s) =]: ulz, ) flz, t)dz, (5)
where the sum on the left iz over all the shocks in the sclution. Here and
throughout this paper, brackets stand for the jump across the shoek of Lhe
enclosed |:xpn_'a>'iull..

Throughout this paper, we shall anly consider forces of zero mean; for these,
equation (1} preserves the mean of u, that we take always zero (since a non-
vanishing mean can be absorbed by a Galilean change of coordinates).

3 A Single Forcing Mode.

In this section, we study the effect of unimodal forcings in {1) For concreteness,
we shall consider forees of the form

fl, ) = sin{z = wt) (6)

(More general unimodal foreings have been considered in [2]] Interestingly,
equation (1) then admits traveling wave solutions of the form

ulm, ) = w2 {D - cos(z — wt)), {7

where D) > 1 and the sign of the square root follow from the condition oo
whe mean:

1)
j; u(;r, ) e = 0.
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Instead of writing a closed expression for D), it is actually easier Lo write w
as & function of D

1 2E
w-——w{D}=t§t_—|jz V2D - cosz)dz, where D31, (&)

Notice that w(D) is a growing function of D, which takes its minimum value
when D = 1. This minimum value w, can be caleulated in closed form; it is
given by

4
Wer = =
w
Tor values of w smaller than w,,, Lhe traveling wave solution develops a shock,

(7) freezes at D = 1, and becomes

I =wi |

2 J|'

]
u(r, t)=w=2 |sin( (9)
In each period (say 0 < = < 2) there is a continuous switeh from the minus to
the plus sign as z = = — wi crosses z = 0, and a discontinuous switeh from the
plus to the minus sign across a shock at some position z = s. The position of
this shock follows from the zere mean condition

i ax
0=J£ G+{z)dz+]: G~ (2)dz = 2mw — 8 cos(s/2), (10)
where G+ = w + 2sin(2/2)|, and G~ = w - 2| sin{z/2)|. Thus
&= 2arceos (1.4.) , with 0< 5«27, {11)

Notice that, at the critical value w = Wer, the solution has no shock, but
a corner instead. Similar solutions wich corners at the threshold between dis-
sipative and non—dissipative behavior seem to be a common feature of forced
systems that dissipate energy through shecke [3),[1], (), [4], 6l Figure 1 dis-
plays the three kinds of traveling wave solutions above: smootl, critical and
discontinuous,

The work per unit time W done by the external force £ on the exact solution
above must agree with the energy Ey dissipated at the shock {since the traveling
wave has constant energy), so we have:

in I 16 rory 2] ¥
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Figure 1: Examples of traveling waves for the equation u,+ (0.5 %), = sinfz—:w t).

For the smooth selutions (7} corresponding Lo w > wye, on the other hand, there
are no shocks, hence no dissipation, and therefore no net work Ly the forcing,
In other wards, there is a sharp transition &t o = e, betweens near—resonant
behavior, corresponding to energy input from the force into the Systen, Lo non-
resonant behavior, wich the solution and forcing in quadreture, and no energy
excilange berween them. This corresponds to a chird arder phase transition,
with the solulion switching from a dissipative {with shocks) 1o a noa-dissipative
(smooth) configuration. The work done by the forcing s a function of w js
shown in figure 2,

Energy dissipated a3 n function of w.

Figure 2: Energy dissipated (as a function of w) by the traveling waves,

Chie may woneler whether the bebavior of this fzmily of exacs trave,
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solutions'is exceptional, or il represents che general dynamics of the model (1)
subject to unimodal forcing. The latter possibility turns out to hold. o fact,
it can be proved that all solutions Lo (1) with forcing given by (6) converge
to the traveling wave soluticns above, The proof, for wh
terested reader to |4, involves a vather unusual vombination of & Hamiltonian
formulation for the model written in characteristic form, a Hamiltonian and a

pseudo-Hamiltonian formulation for the model in jts original PDE form, and

h we refer the in-

the dissipative dynamics of shocks, Figure 3 displays & nutmerical experiment
showing convergence of an arbitrarily chosen initial data to the exact solution
with shocks in {9).

Snlutan dee Urme: 1= 000 K, withee w2 Balution ler Gme: 10,080 (2wl wihas=2

f| T r—_—

Solubon lor Smal 1= 8190 (7 e, =il wa = 3
1 Eltd Lt iy WK s g <o

x

Figure 3: Forcing § = sin z in the equation, with 3 = 1 —wi and w = wop f2 5= 2,

4 Two Forcing Modes.

In this section, we study the solutions to equation (1) when the forcing torm is
the sum of two traveling waves of diffarent speads. For concreteness, we shall
specifically laok at a Lypical example, where the force S has the form

flz, t) = sin() + 2 sin(2(z - 08)) (13}
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We are particularly interested in the behavior of u{z, £) when the frequency
shift ©2 is small, The motivation for this choice is two-fold: on the one hand, it
addresses the general question of the effects of the superposition of more than
one near-resonant interaction acling on the same mode of a general system. On
the other, it is an example of unimodal forcings similar to the oue studied ir the
previous section, hut modulated over a long time-scale. In real systems, such
modulations are typically brought about by nonlincar effects, or by conditions
exbernal to the system. As we shall see, sueh slow modulations may have highly
nontrivial consequences in systems where the mechanisms lor energy dissipation
are nonlinear.

Since {1 is small, one ean in principle think of the response w{x,#) to the
forcing in (13) as frozen in time near eacl value ¢ = ¢y, In order to implement
this idea, we propose the following simple asymptotic expansion o the small
parameter £;

w(x, ) = uglz, 7) + Quy(z, ) + 00, {14)

where 7 = {1t is a slow time variable, Then, at leading order, (1) becomes
1, ol = i e
(Eun I=sn|(J.) + 2 sin(2(z — ). {15}

Thus
ulz, 7) = +4/2 Glr, 7)

where & = G{z, 7} is defined (for each 7} by
G =C(r) = {cos(z) -+ cos(2z — 7)) , (17}

where & = max(cos(z) + cos(2(z — 7)), In each period 0 < & < 27 the solution
crosses (continuously) from the negative to the positive root al the point z =
a7} where G = 0, and has a shock {(jumping from the positive to the negative
rout] at a position = = s(r}, chosen so that the mean of u vanishes. Notice thar
this quasi-steady solution is u very mild generalization of the steady one found

' (16

in section (3} when w = 0, with the only difference that the force is no longer
sinusoidal. In fact, the theorem of convergence of the solutions o truveling
wawes proved in [2] applies to forcing terms with nearly arbitrary shape.

The solution (16) above works as long as G has 4 single minimum per period,
in which case 2y, = 2,(7) and 5 = s(r) are well defined and depend smoothly
on 7. However, there are some special times,
(23’1 -+ 1} T

R YTt

(18)

RESONANT AND NEAR-RESONANT FORCING 115

at which this fails. At these times

(7. Q8] = 30— teos(a)?, (19
and

22 11 kenalz)|, 20)

uglz, 14, -

il

with two candidate crossings of zero.

At the critical times ,, there are two solutions uplz) of the form {20, in
which up switches from negative 1o positive at one of the zeros, has a corner
at the other, and switches ance from positive to negative through a shock, at
a position determined by the condition that uy has a vanishing average. The
quasi-steady solution given by the asymptotic expansion in {14) approaches
one (or the other) of thess two solutions as t — 1, from below [or above,)
The reason is that at almost all times & has several local minima, evolving
in time, with one of them smaller thun all the others. The critical times oceur
when two local minima exchange the property of being the global minimum. At
these times z., ceases to be smooth, jumps discontinuously from one position
to another, and the expansion in {14} becomes inconsistent and fails. We call
the fast transitions oceurring ac Lhe eritien] times “storms”

Figure 4 displays the numerical solution to equation {13), starting from
the asymptotic solution shortly before the critical time t, for a value of the
frequency Q = (L0L. The dotted line gives the envelope for the asymptotic,
quasi-steady solution ugf{z, 7) (i.e: the curves u = + VvZG.) In this figure we
can see the netual solution w = u(r, t) switching its upward crossing point from
one zero of Gz, 21;) to the other, through a relatively Fast transition, involving
the developrent, grawth, travel and eventual disappearance of a second shock.
During this transition, the solution sticks very closely to the envelope of the
quasi-steady solution,

Figures b and 6 display the dissipation at the shocks and the wark done by
the forcing respectively. Both show a marked spike during the storm, approxi-
mately duplicating the regular amount of work and dissipation. Such doubling
of the energy dissipation rate is due to the appearance of an extra shock during
a storm, of o size comparable Lo the regular one. The close agreement between
the energy dissipated and the work perfornied by the forcing, on the ather hand,
has its origin in the relatively slow evolution of starms, faster than the regular
2 t) rate, but clearly slower than a CHt) rate. Tt follows that, at any particular



Figure 4: Asymptetic t —+ oc solution to the eguation wy + i%u’_}x = sin(z) +
2sin(2 (z — Q1)), with £2 = 0,01,
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Figure 3: Energy dissipation rate Ey = E,4{fj for the t — oo asymptetic selutien
for the equation with double slow forcing.

time, the energy input and output need to be in balance to Teacking order, i
steady, Tn fact, the duration of
storms ean be estimated quite precisely; it scales wilh the square
frequency (2]

even during a storm the solution remains quasi
—ront of Lhe
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Woelk done by forcing, Wik done by foicing,
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Figure 6: Work done by the forcing Wy = Wy(f) for the t — 2o asymptotic
solution for the equation with double slow forcing.

The fact that the effects caused by a storm scale with /72, not {3, may
have important consequences when considering the effects of a complex set of
near-resonances. The enhanced rate of energy exchange during storms hints
at the possibility that nonlinear systems may have regimes where the energy
exchanpge among modes is dominated by fast, intermittent events, involving
coberent phase and amplitude adjustments of the full spectrum, rather than by
the slow evolution of individual resonant sets. For this to be the case, the storms
need to be strong and froquent enough to overcome the regular means of energy
flux. We speculate that such strong intermittent events are likely occurrences
in complex systems, particularly those whose hehavior has stochastic or chaotic
COImpoIents.
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REPRODUCTIVE WEAK SOLUTIONS FOR
GENERALIZED BOUSSINESQ MODELS IN
EXTERIOR DOMAINS *

Antonio Carlos Moretti ! Marko A. Rojas-Medar !
M. Drina Rojas-Medar

Abstract

We established the existence of reprodutive weak solutions of a gen-

* eralized Boussinesg Ill{)dt.] for thermally driven convection in an exterior
domain.

1 Introduction

‘The Boussinesq system of hydrodypamics equations ( see Joseph (7], Chan-
drassenkher [1]) arise {rom zero order approximation to the coupling between the
avier-Stokes equation and the thermodynamic equation. Usually it is assumed
at the viscosity and the thermal conductivity are positive constants. There
‘are some physical motivations for considering Auid equations with viscesity and
thermal conductlvity which are temperature dependent. For instance, the ex-
‘periments done by von Tippellirch [29] confirmed these facts. A mathematical
‘model for the case that the viscosity and heat conductivity are temperature
ependent are given by Drazin and Reid [2]. Such a mathematical model reads:
:Find the field u :Q2x (0, ca) — JR?, the scalar functions (#,p) : £ x (0, oc) — M2
Ulwhich satisly the system of equations:

%_‘:_div(y{a)vu)+u-w—aeg+vp = 0, infl
diva = 0 ial (1)
af. AvKBTE) 3 -0 = 0 in 0

/
Im' I |
{ll HIHI*I Tu.ﬂ.:.f(f |M .[.f| {,ﬁ.t ﬂ' 'r,lr“f il H [ |



