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Abstract

In this work & method of straight lines for 2 Bingham problem in cylindrical geometry is developed. A Bingham
fluid has viscosity properties that produce a separation into two regions, a rigid zone and a viscous zone, We
propose a method of lines with the Gme as a diserete variable. We prove that the method is well defined for
all times, a monotone property, qualitative behaviours of the solution. and a convergence theorem. A numerical
calculation is included to illustrate the theoretical resulis.
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l. Introduction

We consider a fluid on a cylindrical pipe as shown in (1. Using the Navier-Stokes equation for the
viscous region and Newton's law for the rigid zone, we model the behavior of the system. The boundary
that separates the two regions is an unknown that evolves in time. It is one of the most important unknown
quantities of the problem. For weak Tormulations in variational form of free houndary problems like the
Bingham problem the reader is referred 1o [4.5,7-9]. Moreover, in [10] there is an extensive hibliography
about these topics. In [1,2,6,12,11] there are examples of the implementation of the method of strmght
lines for free boundary problems.

We reeall that fiuids in which the shear stress is a multiple of the shear strain are called Newtonian
fluids. The proportionality coefficient is the viscosity. Other fluids are known as non-Newtonian fluids.
Examples of Newtonian [uids are: water, aleohol, benzene, kerosene and glycerine. Examples of non-
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Fig. 1. Cylindrical pipe.

Newtonian Huids are: blood plasma, chocolate, tomato sauce, mustard, mayonnaise, toothpaste, asphalt,
some greases and sewage.
Bingham fluids are non-Newtonian fluids and the relation between shear stress T and shear strain o is
lineur. That is,
T =T)+ M. '“}
where 1 > ( is the viscosity and t > 0 is the threshold value,
We assume that the Auid is incompressible, laminar, and with constant density p. Fixing the x

coordinate along the direction of motion, y the perpendicular coordinate upwards, and z the remaining
coondinate, we make the following assumptions:

(1) The pressure gradient, V p, is applied in only one direction, that is, 22 = 2 =0,
(2) The fluid is laminar, that is, the velocitics v and w satisly v =w =0.

(3) The non-zero component of the velocity « depends only on time, ¢, and on the radius, r, that is,
W _yg

A4

(4) There 15 no transport of fluid through the free houndary, r = 5(f). This is a condition of no
deformation, that 1s, u, (s(2),r) =0 ¥r = (.

(5} The velocity of the Muid « at the walls of the pipe is zero. This is an adherence condition.

Using the above hypotheses, we obtain a system of partial differential equation, which we call problem
(P). Making a change of variables, we oblain the dimensionless system in cylindrical coordinates
1
u,—ur,—:u,zf(r), s =r=1,1=0, 2)
afl.y=0, =0, (3)
u (s(). 1) =0. =0, )
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2%

a(s0).0)= [0y — st
w(r,M=ug(r}, s =sy Oxssp=r<l. (6)

The problem is similar to cne of heat transfer, where [ is the opposite of the pressure gradient that,
according to the hypotheses, depends only on ¢. This system is called a free boundary problem because
the function r = 5(r) is the boundary that separates two regions, and is part of the unknown guantities.
We suppose that the pressure gradient is greater than the value 2z This will be called the operability
condition. This condition allows the movement hetween the layers of the fluid. That is,

flty =2 ¥r=0. (7)

We transform the problem (P) using the function w = u,. The new problem (£, ) satisfies the following
equations:

t=0, {(3)

w,-w"—lw,vf-%w:(), sity=r=1,t=0, (8)
r r
w AL, O +w(l.y=—f@). =0, &)
w(s(rht) =0, =0, {10)
21‘1]
w,(s(£).1) = T £=0, (11)
w(r. O =uylr), sW=s, O<sp=<r=1. (12)

Notice that the original (unction & can be recovered from w:
1

u[r,f}z—fw(g,f}d'g'. si<r<, t=0. (13)
r
In consequence, it is enough to solve the problem for w. Besides that, the implementation of the method
will be easier using the problem (F,) since the time derivative has been eliminated from the boundary
conditions.
Tn Section 2 we prove some technical lemmas that we will use in Section 3 to show the well-posedness
of the method and the convergence of the solution to the stationary solution of the problem.

2. Preliminary results

Lemma 1. Let Z be a function that satisfies
z,,+}z,—,l?z =0, s=r<l,
Z (1 + Z(1)=—Ff,
Z(x) =0,
75y = -2,

where s, [ and g are positive numbers, Then

(14)

_21.'9 - - L _f
S—T. d(r)——z(r r), rels, 1. (15)
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Proof. Wedefine ¥ =7, + }Z, Then, ¥ satisfics an ordinary dilferential equation, namely,

Y, =0, reisl),
Y(h=—f, (16)
Yis)=—=2

Solving this equation the lemma follows. [

Remark 2. Notice that the previous lemma solves the stationary solution of (8)12). We will denote the
components of the solution by 3., and w,.:

2 AR
=2 wmin= _{I(,— . -;-). r € [on 11 an
Lemma 3. The ordinary differential equation
2y 4 xy — (14 2%y =0, (18)
has two independent and analytic solutions y) and y;, that converge for x > 0.
=)
nix) = Zﬂ»x‘*’- (19
yalx) = -—y. (x) In(x) + E nx” !, (20)
=1
whaere
=1,
o = ﬂL (2”
gy = ﬁfﬁ, nz
|
(] —ﬂ
2= g 22

|.q.+ fmt [phaa ]
Cigap? = _"%JW n ; I.

Proof. See[3]. O

Lemma 4. The ordinary differential equation

xy xy = (1+xt)y=h, (23)
has a general solution given by

yix) = ¢ ylx) + eayaix)

ya(x)h(x) f »{x)h(x)
- dr + —_ . 24
yily )fﬂ(wz ¥ix2)x) L X2nys — »x)x) A

where yy(x) and v:(x) are the fundamento! solutions of (18) mentioned in Lemma 3,
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Proof. 1 is a well-known fact that the general solution for (23) is a lincar combination of the fundamental
solutions of the homogeneous equation plus a particular solution. The Tast w0 terms in (24) correspond
to the particular solution, which is found by the method of variation of parameters. [

Lemiman 5. Let w be a function that satisfies

w'+tw' = (g )w=g, s<n
w(s) =0, @3

wls) =—28,

where g is a function, and 5. g, and Ty are positive numbers. The solution is
21py2(s5g) 2mpy1(sg)

L L sglwys— yimlsq:-“" ra)= sg(y1y; — ¥pyahx) y2(rg)
yilpg)gle) f wlpg)g(n)
+ —_— e d 26
M"”f 20—y TN | o — e s

where y) and y; are the fundamental solutions of (1R).

Proof. Making a change of variable (x = rg) we obtain an equation like (23) and this equation can be
solved using Lemma 4. The coefficients c, and ¢y in (24) are obtained using the boundary conditions and
solving a linear sysiem. O

Lemma 6. Let Z be a function that satisfies

S T —gZ €0, s€(0,1),
lim; o £(5) = 400, 2N
Z(1)=0,
where g is a positive function in (0,1). Then Z 2 0 in [0, 1). Besides thar, if we replace the sign < by the
sign < in the differential equation, it hotds that Z =0 in [0, 1].

Proof., Suppcme that there cxists ¥ € [0, 1] such that Z(3) = 0. Then § 0 and 5 # 1. Consequently,
there exists & £ (0, 1) a negative local minimum in (0, 1), that is, Z{3) < 0, Z'(s) =0 and Z"H =0
Evaluating the differential equation we have

02272 +5Z'(G)— g (F7Z(F =0, (28)
that is a contradiction. Tf we consider a strict inequality in the differential equation, suppose that there
exists ¥ €10, 1] such that Z(%) < 0 and repeat the previous steps. This concludes the proof. O
Definition 7. Let v, and y; be the fundamental solutions of (18) and g a positive number. We define:

(N W(ﬂ = (y1¥; — ¥, ¥2)(s). This is called the Wronskian of y, and yz.
2 e= qygl[q) + y2lg).

(3) B=—(ay (g)+ g

4) A{s) =ay (sq) + By(sq).
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Lemma 8. The following properties are true:

(A) B <0.
(B) W(s)>0Vsel[0, Il
(C) A(s) >0V¥se[D, 1].
(D) A'(s) <0V¥s [0, 1].

Proof. (A) It is a consequence of (19) and (21).
(B) Abel's theoram [3] says that the Wronskian is a function that never vanishes. It can be proved that

1
Wix) = = + Ofx) + O{x)Inx. 29

It is clear that W is a positive function.
(C) The function A satisfics

SA" 4 sA = (1+5%¢1)A=0, 0=s=<]1,
him; oy Als) =400, {30}
A(l)=gWig) = 0.

The ditferential equation is obvious because A is a lincar combination of fundamental solntions. The last
two equations are vbtained (rom the definition of A, the asymptotic behaviour of y; and yz, and from
(29). By Lemma 6 we deduce that A= 0in [0, 1].

Suppose now that there exists § in |0, 1] such that A{z) = 0. The boundary conditions tell us that 5 is
in (D, 1}. We deduce that 3 is a local minimum, so it holds that A(5) = A'(5) = 0. The point 5 have to be
an isolated root of A. If not, A =0 in & neighborhood [ of §, und this cannot be because y; and y; are
independent solutions. Therefore, there exists 2 2 such that

A" £0, AY@E =0, j=0,...,na=1 (31
Differentiating the first equation of (30) we obtain

=1
FAM(F) + Y (coefficient); A (5) = 0. (32)
f=0
We conclude that A™(5) = 0 and this is a contradiction because of (31). Finally, A(s) > 0 for all 5 in
10, 1)
(D) The Tunction B = A’ satisfies

sTRY+ 3B — 5% B =0, se(0,1),
hm,.g B(s) = —oc, (33)
B(l)=—gW{gq) = 0.

This equation is obtained by taking the first derivalive in (30) and analyzing the asymptotic behaviour
of ¥} and y} when s tends to 07, By Lemma 6 applied 1o —8 and using the strict inequality in the lemma,
we conclude that B < 0in |0, 1|, that is equivalent to A" < 0in [0, 1]. O

Definition 9. Let g be a positive number. We define
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A'(®)
A9’
Als)
K& = weer
T(s) =sH(s). (36)

(349

Hsy=—

(33)

Lemma 10. The following properties hold:

(A) K >D.
B) k(1) =1.

(©) lim, .o+ LK (5) =

M) H >0

() ”(')—1

®E_1=

(G) m;-._l

(H) limy g+ J(s)=1.

(M J has exactly a critical point in (0, 1) and it is a local maxinum.
I J=1lin[0. 1]

Prool. (A) and (T)) are a consequence of Lemma 8. (B} and (F) are deduced from (30) and (33).
(C) Analyzing the asymptotic behavior of ,1.‘{ (s) we obtain:
5q + 067 _ . 1+0(%¢*) + O(s’¢*) In(sq)
1+ Ofs2¢%) + O(s2%¢?) In(sq) ~ 2sq + O(s%¢%) + O(s’g ) In(sq)

It is clear that (C) follows.
{F) We know that W’ + ;'W =0 (Abel’s theorem). Let us differentiate K

A'(s) Als) 1 A'(s)
K= ™ W-:sq)( sq) ”(A() ) s
Divide by K und the result is oblained.
(G) See (E) and the definition of J.
(H) The asympiotic behavior of s H is:
14 0(s%¢%) + O(s*¢*) In(sq)
14 0(s2¢%) + 0(s2¢%) In(sq)”

Ttis elear that (H) follows.,
(I) From (30) we have

A" 1A 1 3 i 1 2

37

lK(s} =u
5

sHs) = (39)

A s A 52

, A" A 2 1 5 | c
H=——+(3) =—cH+H' —(5+7). @n
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Taking into account that J' = H +sH" and {41) we have that

=50 +(1+5%%). (42)
Manipulating (42) and differentiating wc have,
1= TP 200 4150, (43

Every eritical point § € (0,1) of J holds J"(5) <0. Suppose that J'(7) = 0 and J"(5) 2 0. Using (42)
we sce that J2(5) = 1 + ¢°. By (43)
0PI = -1+ 1 -5 =--25"¢" <0 “4

And this is a contradiction. Besides that. if there exists a critical point (in fact at least a critical point
exists becavse J(0) = J{1) = 1), then it has to be an isolated local maximum.

There exists exactly a eritical point (that is a local maximum).  Let us take 5 < 5z lwo consecutive
critical point. Both 5; and s are Jocal maximums. So it holds J”(s) < 0 and J(52) = 0. Take 8 positive
and sufficiently small such that J'(s| +8) < O and J'(s; —8) > 0. Then, there exists s3 € (1. 52) a critical
point of J. But this is a contradiction because sy and s) were consecutive.

(7) By (1) and the fact that J(0) = J(1) = 1 the inequality follows. O

Lemma 11. Let 7 be a function that sctisfies
Z”+}Z'—gz =0, s=<r=l,
Z(1) =0, (45)
Z(5) =0,

where g is a positive function and s is @ positive number. Then Z < O.in [5, 1]

Proof. Suppose thal there exists a point § € [s, 1] such that Z(5) > 0 (7 # 5 and 5 # | because of the
boundary conditions). Then there exisis 5 € (s, 1) a positive local maximum, that is, Z{5) > 0, 2'(5)=0
and 2() £ 0. Evaluating in the differential equation we have,

1
0<Z"E) + gz‘(ﬂ — 2(NZ(F) <0, (46}
and this is a contradiction. O

Lemma 12, Let Z be g function that setisfies

Z"+§Z'—-gZ}U. s<r<l,
Z{5 <0, {47)
Z'(M+Z() <0,

where g is a positive function and 5 is a positive namber. Then Z < O in [5,1).

Proof. Suppose that there exists § in |5, 1] such that Z(5) = 0. Itis clear that § # 5. Also it can be proved
that Z(1) = 0. If Z(1) < 0, then there ¢xists 5 in (s, 1) such that ¥ is a positive maximum. If we evaluate
the differential equation in ¥ we will get a contradiction. Because of the boundary condition in § =
we conclude that Z'(1) < 0, and this implies that the maximum of Z is in (5. 1). As before, we reach a
contradiction. The proof is finished. O
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3. Method of the stralght lines

We discretize the time and choose a fixed time step Af > 0. We define:

L=m—1)A nel, (48)

5, =8(ly), nel, (49

fa=flts), nel, (50

w,(r=wlir,t,), nel, (51)
1

g= AL (52)

Approximating time derivatives with the incremental quotient, the (F;) system is transformed nto
another system, called (Pd, ). Forall n in F:

" ] I -5
L + n+| (r_z ‘I"?z)mml =—q g, TE G-I (53)
Wihey (1) +1ur|.|.|(1}=—fu+|1 (34)
it (5as1) =0, (33)
o i 2n
Wy (S ) =— 01- (56)
Sut1
wy = up, si=# O=<s=<r=l, (37)
Gatheting (53), (55) and (56), and with the help of Lemma 5, it is clear that
2y (Su19) 2oy (8i119)
Wil = ———— — ———————wlryg)
vl sn+:qW{a-mm“ O Wity
1 (g)wa (1) f ayalg)w, (1)
— wlr I T du+ wir ey, 58
yalrg) f T i+ vl r.!}ar I I (58)
Fnfid n=1
and
2t ¥2 (S r19) 2ty (Sns14)
)L (r) = T (rg) — ——— Ty (rg
! S W(-fnllﬁﬂ il -in+llW(3n+Iq:|}/
u.,. ; [ ¢
= ailra) j’ @y (ng)wn (1) r:tuq) U 4 + ¥ (rg) f'q Rghen ) | (59)
f Wipg)
Sadi el

Theorem 13. If the initial data ug satisfies
uy £ 0, in [5p, 1]
1..-.; + Ly <0, infs. 1]
and the operability condition (7) holds, then:

(60}

(1) the systemt (P,) admits ¢ unigue solution for all n in I,
(2) w, <0, in |0,1], forall n in M.
(3) w, + %wﬂ £ 0, in [s,. 1], forall n in B
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Proof, We will proof (1), (2) and (3) at the same time by induction. We extend uy by zero in the interval
[0, 51]. Tn this way w, is continuous in the interval |0, 1] because ug(sg) = O {compatibility of the initial
data). Now, (2) and (3) hold because of the hypothesis (60). So, the step n =1 of the induction is
completed,

Suppose now that we have 5, and w, such that s, € (0, 1), and w,, satisfies (2) and (3).

Egs. (53), (55) and (56) have solution wy,.; as expressed in (58), provided that s5,., is known.
We introduce this expression into (54) in order to obtain an equation for s,,,. After some algebraic
operations, and using the definition of K, we have that,

1

2
0= foar— K (syi) = f (0K () dp. ®1)

"

L]
Therefore 5, has (o be a root of & function £,y defined by
1
25 2

o1 1(8) = fasr — '?-Ki-ﬂ — | g wa(u)K () di. (62)

¥

There exists at least ¢ root of Fuy) in (0,1),  Ttis clear that £, is continuous in {0, 1). Besides that,
Enpr (1) = fay| — 219 = 0, because of the operability condition. By Lemma 10 and by the exicnsion by
zero of w, in |0, 5,], we deduce that im, g+ F,+1(s) = —00. Therelore, there exists a root in (0, 1).

Fyy1 has at most ¢ eritical point in (0,1). Tt can be proved that

R
Fl(5)= 2—2“1«:(;; [.m) + iw,.m], (63)
J 5 2m
We define
s2q?
B,(5) = E—w. (s). (64)
Gh(s) = J(s) + B,(s). (65)

Notice that B, is a negative and decreasing lunclion, because
¥ 2
By =2 (wy(s) + m) + 2w, (5) < 0. (66)
2 5 2ry

I Fpy1(s5) 70 for all s € (0, 1), then £,y has no critical points. Suppose now that there is a root § of
Fy .- Using (A) of Lemma 10, we deduce that § is a root of G,,. The critical points of F,,, are roots
of G,. But by Lemma 10 the function J has only a critical point that is a maximum, and the fact that B,
is a negative and decreasing function implies that G,, has at most a unique root. Therefore, there exists at

most a critical point of F ;.

Fuy has a unique root in (0, 1). I F,,, docs nol have a critical point, then F, . is an increasing
function, and the root of F,yy is unique. If F,,, has a critical point 5, then F,, | is increasing in |0, 5|
and decreasing in [3, 1]. As F, (1) = 0, the root is in the interval |0, §], and there F,,, is increasing.
Finally, we deduce that there is only one root of ;.

Now, we define s, as the unique Toot of F, 4, and 5,5, (0, 1).
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Wy % 0én [0,1].  We extend continuously w,. by zero in [0, 5,4 |. The function uy, | satisfies (53)-
(53). and using Lemma 12 we prove that w,,. is a non-positive function in the interval [0, 1].

Wy, + ;l_ul,m <0insps1, 1) Wedeline Z, = w,_, + Jlrw,,.,... With the help of (53) we deduce that

:” = _quu’n — Wy i:'- (67]
Differentiating (53) and using (67) and the inductive hypothesis, it is clear that

r l rF >
i+ 2o =0 Tt =—4" 7y 2 0. (68)
Finally, £, satisfics the following system:

2:| 1 + %Z:I‘H = qzzn-l—l =0, re (jﬂ.-!—LI I]‘
Zant(1) <0, {69)
ZII i J(SH-I) <0
By Lemma 11 1t is seen thal £, < 01in [5p45. 1]
This last step completes the inductive step, and the proof is inished. O

Theorem 14. Suppose that (60} and the operability condition hold.

(1) If fasr 2 fro wa = wyoy in [0, 1] and 54 5 Sac1. then weg < wy in [0, 1] and Seq1 < 50, Besides
that, if {fal is a non-decreasing sequence that converges to [, then 5,0 2 %:?I- 5o S Sy and
iy, % Wi,y i 10, 1]

I ool 5 foowy 2w,y dn |0, 1] and 5, = 5,_y, then wyy = wy, in [0, 1] and 5, = &, Besides
that, if {fy) is a non-increasing sequence that converges to fo, then 5,4 = ff; Soy = Sy and
W 2= Wingy i [0, 1]

Prool. (1) It is casy to see that for all 5 € [0, 1]:
]

Fua(s)— Fuis)= (fn-H — fnl] - fqi{wnm] - anﬁﬂl)xulj UH = 0. (70)
This implies that 5, < 5,.
Let us define Z =y, — w,. The function 7 satisfies
Z'+1Z — (5 +45)Z 20, re(s, ).
Z(s,) 20, (71
Z{N+ Z(1)<0.
By Lemma 12 we oblained that Z < 0 in [s,, 1], that is equivalent 10 W,y < w, in [s,, L.
Besides that, il & € [0, 55.1], then (wsey — wy)(5) =0. And il 5 € [5541, 541 then (wyey — w, )s) =
wyy1(5) < 0. Therelore, wyq < wy in [0, 1].
Rewriting (53) we oblain

d 1
5("’:&1 + 7 I) =—q (1, — i) 0. (72)
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Integrating between 5, umd 1, we have

2T|'|.

T
—fort €0 = S50 Z . (13)
Fnt1 n+l
Now, f.41 < fo implies that J,—‘"!— = fﬂ Using the above result, we have 5,41 2 5a.

We define Z = wypy — te,. If 5 € [0, 55,] then (wny — woo)(s) =0, and if s € [5:0, 53], then
(s = wWaa)(8) = —il. () = 0. In the interval [s,,4. 1] the function Z satisfies:
Z'4+1Z - 370, rels.ll
Z{D+Z() 20, (74)
Z(sap1) 20
By Lemma 12 it holds that Z = 0in | 5,41, 11, that is equivalent to wy,, | 3 Wy, in [5, . T]. This concludes

the proof.
(2) The proof of this part is similar to (1) and we amitit, 0O

Theorem 15, Suppose that the initicl data satisfies (60) and the operability condiion holds. If
limg, oo 8y = 5, and lity, oo wy, = w., then 5, = 5., and w, = we,.

Proof. Taking limit to {58) when n tends to infinity we have

_ 2nya(s.q) _ Zuyi(s.q)
u(r}= _—qW{ )m(rq) —-—-—.qw( ) yalrg)
»(rg) f qyl(#@)w (1) i+ y, (rg) j‘ a2 (g w, () di. 5)
W(ig)
Differentiating (75) we get
A 2y ya(s.gq) , 2ron(seq)
= W Y T SWeg 2P
o f m{n#)w.cu) PO L ey f gy(ugdw. (i) de. 76)
Wipg)

Differentiating one more time, it can be proved that w! + Lw! — Lw, = 0. Also it is obvious that
w,(s,) =0and w (s,j = —2'*

Takmg limit 1o (59) whan n tends to infinity we obtain (76). Therefore, lim,_.c uy | = w,. Now,
wy, (1) +a, (1) = by sa (), (1) + whyst (1)) = limye oo — fog | = — fae- So, gathering all the equations
we have:

wy + luf — ,_311": =0, rel(s,1),
w#(-’—}“
w)() =22, w
w (1) + wo (1) = — [
By Lemma 1 this system has a unique solution:
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5 2% EE- N
i — + = do0-
fw
S S{%n
w,(r)= "T(r - Wealr) ¥r €[5, 1. {78)

This concludes the proof. O

Remark 16. The method works even with functions f that are not necessarily constant. Besides that, the
expecied behaviour is seen in the numerical experiments, namely, that the asymptotic behaviour of the

free boundary is £, and that the physical property w < 0 holds.

4. Numerical experiments

The algorithm for the following results was programmed in Fortran, First we compute the rootof Fy g,
and then we compute . from (58). The functions w, are stored as splines functions und the integrals
are compuled by the Simpson’s Rule. The numerical experiments are shown below and prove that the
algorithm reproduces the physical behavior of the solution. In the following figures there are examples
of several cases.
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Fig. 2. Salution with sp =0.7, g =1, Ar =0.1, fir) =4.
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Fig. 3. Solulion with sg =0.3, iy = I, At =0.1
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5, Concluding remarks

For the discrete solution of (8)—(12) we have reproduced the physical behaviout of the fluid. That
is wa(r) < 0, {5,], is monotone if { £}, is monotone, the stationary solution for the discrete problem
{which agrees with the stationary solution for the conlinuous solution) is established, and the discrete
solution converges to the stationary solution. Morcover, the algorithm is well defined for all f, that

salisly f, > 2ry, and can be used in real problems,
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