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ABSTRACT: We consider 2 twe-pliase Stefan problem io a semi-infinite material,
when a convective condition is assigned on the fixed face z = 0. We demonstrate the
monotone dependence of the solution with respect te the data and with respect to
the thermal transfer coefficient ff. We study the asymptotic behavior of the solution
when [ =+ oo,

We also study the asymplotic behavior of the free boundary when £ = oo and we
obtain an explicit expression with the same kind of behavior for the free boundary
as in the one-phase Stefan problem with 2 conveetive boundary condition which cor-
responds to the case with a temperature boundary condition at the fixed face. We

obtain some results for the disappearance of & phase. Finally we analyze the case
when the liquid phase is a supercooled liquid.

AMS (MOS) Subject Classification. 35K20, 35K9%9

1. INTRODUCTION

In this paper we consider the two-phase unidimensionsl Stefan problem for a semi-
infinite material with = convective boundary eondition al the fixed boundary, £ = 0.

Specifically the mathematical problem consists of determining two functions,
UH[I,!} and v [z, ), a function = = s#(t), called the free boundary, and a time
T such that (6™ o', % T) satisfy the following equations, houndary and initia] con-
ditions, For each positive H we consider:
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Froblem Py :

pessl =kauli =0, Dy={{=,1):0 <z <s"(8),0 <t <T], (1.1)
pen —ke =0, Dy ={(z,0): 2> HiH) 0t < 71, (1.2}
WAz, 0) =p(z) 20, 0<zes(0) =" (1.3)
v'(2,0) = ¥(2) <0, = > ", v (oo, 1) = o) < 0, t = 0, (1.4)
kauf(0,8) = B (0,0) - f(1), D<t<T, {1.5)

(s (1), ) = uH(s7 (1), 1) = 0, .0 <t < T, {1.6)

krvg (87 (0),0) — kaul (s7(0), 1) = pli®(1), O <t < T, (1.7)

where the phase-change lemporatuse is assumed to be zero and ff is the thermal
transfer coefficient (# > 0).

Very peneral rosults about the existence of classical solutions to the two-phase
Stefan problemn have been abtained in Fasana s Primicerio [7], Friedman [9), Can-
non and Primicerio [s], Cannon and Primicerio [5). The asymptatic bebavior for the
one phase Stefan problem with temperature and {lux conditions en the fixed hound-
ary = [ are considered in Cannon and 1ill [2], and Czrnon and Primiceria [3].
respectively.

In Solomon et al [13], the behavior of Lthe solution with respect to the heat transfer
coeflicient #f and the asymptatic hehavior of the free bounda; ¥ in the two- phase case
are studied for the constant case i) = T2 » 0. ln Tarzia and Turner (14], we
gencralized this result for the one-phase problem in the ease when S(t) is not a
constant. There it was considered the one-phase Stefan problem with o conveelijve
boundary condition 2t the fixed face, given by the temperature of the external fluid
J(t} dupending on time. It was proved that the asymplotic behavior of the free
boundary is the same that for the case wlers the lemperature boundary ecandition
fit) is given at ¢ = D, Moreover, the explicit limit expression is also given. In this
paper we study the asymptotic behavior of the corresponding free Loundary s¥(3)
when the time goes Lo infinity and we give an explicit expression for this behavior. In
Knaber [11], and in Aiki [1], a two-phase Stefan problem with very general houndary
condition at z = 0 are studicd. In Fasane and Primicerio 8], a cne-phase Stefan
problem for the supercooled liquid with 2 zero flux at the fixed face was considerad.
In Comparini et al [6], this prollem was studied for & general flux g(t). In Marangunic
and Turner [12], and in Turner [16], the twe-pshase Stefan problem for Lhe supercoaled
liguid with flux and temperature boundary conditions at the fixed faces z = 0 and

r =] was analyzed.

This paper is organized in fivesections, In the first part of Section 1 we relormulate
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the free boundary prablem and we prove some preliminary results. In the second part
we show the monotene dependence of the solution with respueet to the data and with
respect to the thermal transfer coefficient Mf. In the second section we consider
a two-phase Stefan problem with & temperature houndary condition on the fixed
face £ = 0 and we prove thal the solution of Lthe two-phase Stefan problem with
convective boundary condition i bounded by the solution of the two-phase Stefan
problem with temperature condition. In the third section we obtain the convergency
of the free havndary when ¢t = oo and we prove Lhie convergency of Lthe solulion of the
plob[cm witl convective condition when [f — oo to the solution of the prn]:]l‘in with
temperature condition, For the multidimensional two-phase Stefan problem through
a variational ineq Ll&'it}' this a.symptotju: Lehavior was analized in Tarzria 1]5]? where an
explicit expression is given. Analogously we can find a result for the unidimensional
two phase Stefan problem, see e.g Friedman [10]. Tn this sense, this work generalizes
to two-phases the results obtained in Tarzia and Turner {14], where we prove the
asymptotic bebavior of the free boundary of the one-phase Stefan problens. In Section
4 we discuss the relation between the disappearance of a phase and the total Crergy
supplicd to the media, In the last section we consider & two-phase Stefan prollem
analyzing the relation hetween the initial data, boundary data and the possibility af
continuing the solution for arbitrarily large Lime intervals.

Ir order to have existence and uniqueness of Lhe solution we require the following

assumptions on the initial and boundary data:

i) Let @ = () and o = (=) be pusitive and negative respectively piecowise

continuous functions.
i) Let f = f(t) be a positive bounded piecewise continuous function,

i) Compalibility conditions: f{0) > (=) in (0,5¥), w(b") = ¢(s7) = 0, kaig'(D) =
H{w(0) = f{0)).

1.1. SOME PRELIMINARY RESULTS AND REFORMULATION
OF THE FREE BOUNDARY PROBLEM

Lemma 1. The temperatures u'f(z, t) and v {z, 1), under the abouc hypotheses on
the dats, satisfy the following inequalities:

Jv <0,
i) uf = 0.

Proof. i) Since v#(z,0) = () €0 for z > b¥ and v¥(s(2).4) = 0, then using
the miaximum principle we obtain v'(z, () < 0.
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i) Sinee u(z,0) = wlz) = 0 and w (gH{1),1) = 0, we will prove that u'ql[l]: ) >
0,¢ = 0. Therefore, let us suppose that there exists a first time fp > 0 such Lhat
u”m_;uj = (), then uH{u,.!,:,) = n_1"|n 1.:"[:;1:1:}_ where Iy = 140 {! t f:,}. Maw by

the maximum principle we obtain that w¥(0,4:) > 0, but this contradicts the

boundary condition

uf (0, tg) = L—’[ﬁ“[u,w—,rr_run = --f—f{zui < 0.
'z ¥

Then u¥{0,¢) = 0, ¢ =0, and w®{z,1) = 0.

Lemma 2. If (v¥, u" 5", T) s a solution of Problem Py, and ¢,z € LEY,00)
then, setting s% = 5 and B = b for convenience in the notafion, we have the following

cquality:

Hs(0)\ H5Y | [* (ks +zH)
pf.![f] (l + ET) = p.l'b (l + k—:a) +L Tp(tjtﬂ:

bd (Eugeil)¥E T
Ifl (k.-lk.:.h) = a:l'.'|:+fcI H () dr

aft] | 24 oo Hr
-f Lg-:;i-lu”[z.t]d:- f (h .|.,-:”J;,)ﬂ4,
(/] 2 3

£y oy

(1]

&,
where o; = =112
P

Proof. Consider the Green's identity

ff (wlhz — 2Lw)dz dr = %‘ (wzy = zun)ddr + — dr,
oy am o

(1.8)

where L denotes the heat operator Lu = 4z — Juy, @ = £, and L° its adjoint.
Wetake z =uf andw=lin D, z=vf andw=1in D, = {(z,):s{t) <z <

¢ ¢ =0}, withe> (.

We replace in the Green identity, take the limit when ¢ — oo, and obtain the first

integral reprasentation:

b s
kz k[
Is(f) = = ]
als(1) ;:Ib+j; m:p(:}dz-i-_{ 2yla)s
...f kguffﬂ,'r}d'r
o
*li] g =k
_f —zqull"_"li}!!I - [ _11_'111{;‘{,] dr.
[T MU
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Nowweset s =u w=xin ), z=v" w=xin 0, We replace in the Green
identity, take the limit when ¢ = oo, then abtain the following inlegral representation:

{!l E fl_x_:?__,.. -
,ri' = -p-"l’2 + i ﬂ_z.t..«[.r,rf.l

+[ —.'I!*.l'.l z)de 4 f Egu® [0, =) dr (1.10)
4

afn) =
—f zEuH[I,!}dz—f m—luI’T{I,t]dz.
T afgp @

1
il p
Now il we consider (1.9) + 1—- {1.10), ebtain the relation (1.8). (]
]

Lemma 3, The femperafures v¥(z,1) and u7(2,1) subtisfy the following fnequalitics:
1) w1} < f{t) in Dy,
i) vz, 1) = ¥{z) in Dy,

under the following hypotheses on the data: J"{z';l =0, 92) <0, and ") = 0.

Proof. i} We define an auxiliary funclion

Viz,t)= f{t) —u"(z,1).
The function V' satisfies the following problem in Dy:
LV = peyVi = kaVer = pea f(2) 2 0
Viz.0) = f{0) —o(z) 2 0
Vis(t)t) = flt) = 0
ke Ve (0, 1) = = H{u"(0,1) — f(1)) = AV(0,1).
Since LV 20, by the maxinmun principle we obtain V{z, ) > 0,
i} In the same way we define the auxiliary function

W(z,1) = v¥(z, 1) = ¢(z)

which satisfies the following problem in oy

£y M”i - k] "’Vrr = klﬁ'”{’:) 2 0

Wiz,0) =o"{z,0) -yi(z) =0

Wis(t),¢) = 0.

We obtain W = 0in D, by using the minimuem princigic.
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Using the maximum principle we obtain 1V 3= 0

In order o see that O 3 0, first we suppose that there exists a i, < fy such
that /(0,4 ) < 0 then UZ{0, &) > 0. But this contradicts the boundary condition
kU0, t) = (Hoa— H )"0 8) = FE0+H,U(0,1) < 0, sinee By = Hy and u' < f[1).
Then we eonclude that O 2 0.

Now, we shall prove that s (t) < a"1(t). We compute U al the point (™ (tg], 2],

namely:

U(s™ (o), o) = 6" (s" (t0), 10) — u™ (M (L), ta) = 17 (572 (25, 20) = 0.

Then the point (£M(t), %) = (5"(1u), to) is 2 minimum for the [unction & in
0 <z < sy (t),0<!<ly and by the maximum principle U.(s%1(), (o) < 0.

In the same way we conclude that (s{fy), {y) 35 2 minimum point for the function 1
at itz domain, and Vo(s(ty), tg) > 1. We plug these inequalities in the Siefan condition
fur the free boundery amd we have :

0 = kalz(s™ (t), ta) — kr V(s (1), to)
= (hyus® = k) (s (te), to) = (kau® - ko) 5% 1), 1)
= --pf.ﬁ”’[tq} + plsf 1) = 0,
which is a contradietion. Then (1) < ¥ {¢).¢ = 0.

The case b = 6" is wnalyzed by taking the limit of the previcus result when
bifr = and we take bz — B [m|

1. THE CASE WHERE THE THERMAL TRANSFER
COEFFICIENT APPROACHES TO INFINITY

We consider the following two plhase Stefan problem for a semi-infinite material
with a ternpersture boundary condition on the fixed face » = 0

Wi call this Problem P, which is given by
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peaty — kyugs = 0, 0<x < a(i), (2.1}

pryty — ko =0, s{t) < z < o, (2.2)

ulz, ) =) 2 0, 0<z<h, (2.3)

vz, 0) = ¢z} < 0, her o, (2.4)

v{eo,0) =y(co), 0, {2.5)

u{l,t) = fit) = 0, U<te T, (2.6}

u(s(t), t) = v(s(t), 1) = 0, l<teT, (27)
kyve(s(t), 1) — kaua(s(2), ) = pli(t), 0 <t <7 (2.8)

Theorem 2. The solution (u,v,5 1) of Preblem ., end the solution (ufl of ¥ T)

of Problem Py satisfy the following tegualifies:
i sH(e) = s(t), t >0,
u <u,0cracsfi), Dcter
i) vf <y, st < r oo Detc 2

provided _,"' 2009 < b oand w0

Proof. Since s"(0) = p = s{0) = b, then s9[1) < s(1), ¢ > 0. We denote by y
the first posilive lime such t]at i (lg) = (o) and #{#) < (1) We define the
functions:

Wi =u=uf, 0<zasl(t), 0ctay,
Wi =w—¥ st e, D<iciy,
The functions W, and Wy satisfy the following equations:
pea( W) — k(W) =0, Dcz<si), Oete ia,
Wal2,0) =0, 0<rabh
Wals®(1),8) = u(s"(t).0) 2 0, (Qet< to,

al0,4) = u(0,6) - w(0,4) 2 f(e) - £(e)) = o,
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since uf(0,t] = flth '.-'r >0) Then We >0l <z < 5”".”:[' < b« by S

Wi {ta), ta} = Wals(ta), fu) = u(s(ta), L) = 0, the point (3" (19), tu) is the minimun
point for the function Wy, then by the: maximum principle we obtain

(Wa)els™ (L), ta) = (Wa)e(s(to). e} < 0.

In the same way we obtain that Wy = 0 in the domain s{f) < x < oo f < fy,
and the point [#(f), ts) is the minimum for Wy, then by the maximum principle we

conclude

(W)l 5 (k). t0) = (W) ):(s(t0),20) > 0.

Now we compute
0 2 ke Wale = k(W )e(s™ (ta), ta) = pl(3™(te) = i(ta)) > 0,

which is a vontradiction. Then s*{t) < s(t}, e = 0, & = 0, l

3. ASYMPTOTIC BELIAVIOR OF THE FREE BOUNDARY
We will study the asymptotic behavior of the fres boundary s7{{) when £ — oc ar
B e oo, Lo Tarzia and Turner [14], wus considered the global existence in a general

Stefan-like problem.

Theorem 3. 4 (b, v" 2% T} iz the solution of Problem Py, and 1, z3b € LB, o0),

then we heve the following properties.

DU 57 J(r)dr < oo and lim [(t) = 0, then lim s5(1) = 57,

where 53 is the undgue posilive solution of the equafion of second erder given

by
plz 61 + ii—;:r) =1,
witere

by H b ,
D= plby (1 + .}-'r‘—-) +[ (k2 4 yHJ?-‘i—ﬂ dy
1] 2

2k,
2 “Ik ) wr
-[ (r;.+.”1 1)—""-5’] f.fy+[ N f(r)dr,
M I - 1 1}

provided that D = ().
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iV I [T fl)dr = co, then lim I"I—I'rr-—"l =1, where o(t) iz the free bovndary of the
I LT fleidr = oo, th Jim ) J
Jollowing prodlem:
Far each ty = 0, let (g, Vi, Ve ) be the solution o the Jollowing praliem F,:
rer(Vidi=dy(M)y,  Oexe o), > t,
(Ve =5V, s ofi), ¢ > 1,
Vi(z,0) = 0, 1}.5: x < 5(19),
Vil2.0)=2"a,0), 2> 4%,
Vileo,t) = vM(oaty), 1> ty,
ka(V2)(0,6) = B{Vy(0,1) - i), t>4,
Hoft), 1) = Vile(t),t) = 0, {3 fg,
elt) = 0,
kW )z(o(2), 1) - ky Alelolt)t) = pla(t), >
FProof, i} IMiest we find Lounds for the functions v apd i

We define the auxiliary function U wlhich satisfies the following:
Problom /4,
poplly — k., =, Il ceon, (= a,

kaU2(0,¢) = (U 0, {) - fit}), L=,

w(z), U<z Lo,
Ufz,0) =
0, b < 2,
Using the maximum principle we can prove that u/fiz ¢} = Uz, b)), for

0<z<s5%t), t > 0. Morcover W limy o fit) = 0, then limy, Uz, ¢) = q, by

Friedman [y),

Now we define £e function V such that Probiley, Pl iz satisfied:
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Problem Py
gV, — Ve = 0, V<o, (20
ViQ,e) =0, t >0,
Vioa, i) = ¥(oa), t=0,
P =1, l<z b,
Viz,0)
Piz), W < 1.

It follows that V(=) < 0and V(z t) < vz, 1) in sM(2) < 2 < oo, Itis known
that ]lm V(z, 1) = 0 by Friedman [9].
Using the integral representation {1.8) and the bounds for u” H and v¥ we oltuin

the following inegualities:

tﬁH il [ }l = ( kN la)
" )+ | (+zi) Bz + o+ 2t | B gy

Uiz, 1) d

¥y

: g
W RTCT R ICEEY
o [V

< plaf? ll}t 1+ f: “(r}) (1.1)

W H w k
< plb* (1 + 5 ‘) + f U-‘:"-IH‘.I—IP{I‘] dz 4 [ {J'a‘. 4z ‘.H) ¥lz) dz
2y u ey N k2 iy
% by V(=

e ] : .t
+ju Hflr)ds --[!Jrirlfk;‘.-l'.ﬁk—w]&—tdr.

From the zbove inequality we can conclude that the lim s™(t) exists, then
ot e

i

taking limit when t =+ oo in (3.1) we obtain:

. i
lim pls®{1) (1 g .s”{!:l) = plbH (1 + b-—-—H) f (k2 + :H}w{-—:) 2z
= 2#1 [+ P

+[" (J:ﬂ :lH) W) 4 +f Hf{r)dr.

i) The proof is the following. Using the maximum principle we can prove that
aft) < sH(1), t = ty and

Wz, t) < w¥(z.1), Wi(z,1) < v*{x,1) in the correspanding domains, for { > (,
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Now, we use the integral representation (1.8] with the adequate initial condition

at £ = fg and we et

_ H . . RO LA
) (| + mf‘".‘f}) = pls*(1y) (] o, ’JI

M e =]
1 / = (Jq +1:—H:| w(z, fﬂdl .—'f (kg IH]‘J [I I"} dr
1] )

L] (1) ity

i =) . ky t:"[m,zjl_
[ < [ (naeg) S

N s (Lo ) H
[ kit HI Clz ;I!..C < pls Irt o) Il(] i;.- )
r||‘| 7}

sl #ix = N v, i)
+[ (ks + zH)— |f|;- : di +[ (J.-: + 1 .__’.H) 0 L T
o i o [t kg .

r [t} V: o "CI 1]
; H dr - ks + zH)—=dz — b+ )r--dz
N [ ftr) j.- et }“2 j’;tr] ( I 3"‘-. L

H
=rn:fn:-+pra{f:-( o).
where
) = plsii(e s ffnJHJ T b gyt
Clto) = pls™(ts) (1 = +j_4 (ks + )= 20 gz,

Then we have

Ahc

ot) < shlt) < oMt) + ('T;DJ
Taking the limit when £ -+ oo in the above inequalities wnd using the fact that

Hip
lim &(t) = co (since [ f(r)dr = oo}, then :l_:;[gt- ;{—EJ =
O

Lemma 5. Jf (w", ¥, 55, T) is a sotution of Problem Py, with f>0and H >0,

then [ ]
e (Dol + 2 |1l 0.0 + C.
f{u (0,7) — f(r)) dr 7]

where
0=~ [ ueyis 0
LI

d st} is the free boundary of the problem [,

Proof. Using the integrul representation (1.9) we can write
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L)

] C-,
”f (fir) — u'(0,7)pdr = pls®(t) — ,-.m_f -'“-‘»,of:}d:
o ay

[ ky oH i) kg
- —ib(z) dx 4 t)dr
1 o Wiz) ITfu i Mz, t)ds

¥l

00 o J‘:_ :
¥ < pls® _[ o B e 4 Sy B
+['”“] o.“ (z,t)de < pls™ (1) nlv{ﬂ‘h i & {l}ug rc";].na::;::f[ )
OB+ 2 W) - [ ble)e
- g {u.e]) . @ E
that is the thesis. -
Lemma 6. ffl[u ol 81T ds a solution of Problem Py and the deta satisfy > 0,

then (u v 7. T) wnd (u,v, 5, T) satisfy the following incquality

0.-"

I

ol(s2(t) — @) " ahalu(z, £) — w'(z, 1))
+{£ 2 u Jd'r

£y

L afe) oy d&,i:-[n L!{I(T.]_u [917”&3’_

Proof. We use the integral representation (1.10) for both pairs: (w¥, v¥, 5% T and

{u,v,5, T} and we oliain

st B b by
HE{ ) —Pf + [ Brptz)ae

o Iz

ol

ad kl. 4
"r‘/! u—iIlP{:]la’: -|-£ ka0, 7) dr {3.2)

‘"{‘J k o
—f z—au“[:,ij dz—f k' vz ,t)dx,
] oy i) ‘71

s3(t [
l: ) Pf'—-l -k—zxr,d{z]d:r

L i. ¥
+/; ;-:-z#.l{z:ld:: +fu kyf(r) dr (3.3)

ae) E L
—f I—Ju{z.f}d.t = s—ulz, ) dr.
o g 1) ’

Tltﬂn we substract s}, from 57 and using the fact that v > 0 and v < 0 we abraiy

:  the thesis. o
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Theorem 4. (Convergency when H — o). ff::.:”,:-”,.—.”,l"_i- w a solulion of Prob-
lem Fyp, (w,v, 5, T) is @ solution af Freblem £, end the dula salisfies f >0, then

1) Ty ee 9 (8) = 3(1),

) limy o w®™(2,2) = u(z.1) and limp o v™(2,8) = v{z.,1) for all compact sets

included i therr corresponding domains,

Proof. Using Leminas 5 and § we can wiite the following inequality:

0 < POt | [ shtulet) iz,

py g g £ o _g';:.',!-.i.-.."i N
+j zh(u(r, ) v {I.E}En,q: {K:-,-L .E‘__I ﬂ‘”ﬂ]}_',
a¥ep ¥ H

Since 7 < s v S yandof < v in their corresponding domaing far all posilive
f1, then the three left hand side members of the inequality are pesitive, and we abtain:
TR 0 ko .

pl(s¥e) - s5(t)) {--I!F[Ijt;“l-é = !;.-'r.||.-u_1;.]1" + ]

[| R Sl o ..

- 2 f

for wll A Let us tend M Lo infinity for each ¢ = 0, then

lim s"(8) = s(t), viso0
A —ven
We can do the same with the difference y — w™ apd w — whl O

[e is interesting to study the asymptotic bebavior of the frec boundary £(t). In
this direction we have the following results,

Thearem 5. #f (w0 5¥ T is g solution of Problem Py, for B > 0 end the
following conditions:

(e i

i} f flr)dr = oo, f flr)ldr < oo Wi, b and Tieriy g me \.f?ff!} = oo,
-] L)

% 05 )= fim W =0

ore 2afisfied, then

M1 + 2B
limn E g "I'.‘_. —_ _"I =
I =+o Hjn fir)ds

forall H » 0
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Proof. We will use the definition of the functions ¥ and Va of Theoren 1. We
roof.

write the integral representation (18] for (¥, Vi, a):

i)
H (bt 2l ...ﬂf fir)dr
pla(t) (1 + mﬂm) = j; ay i \

o i E,t I
- £ ky ‘mk— )VL[: 1) c‘:+f [k + H—’)—”dr
o) ka Sl

Using the maximen principle and the fact that ¥i(z, t‘] < MAX[r, 0o _ir{ ), we have:

A (k4 H
pla(t) (] ! %c E}) . -./; '[ jr-g Jﬁ‘r”lu--l o5

e ;.'| UH[I_I-!-u]' . [I
4 =) ——ilr .. TaT
+[nm]“' ' 1H*=J o I t s

(kaot) + 2o(s)?) (34)

fry

+f<ﬁ.+ 351” =)y, —uf ()

= =M.y

and then

j Hf(r)dr + [ {k.”u;-;}%taz
{ f+ If |I‘U'] }I

(e}l + ,”

1

since v > W > Viz2e|l),t 24

Mow for (uf v¥ 5% T we have the following relations obtained from (1.8}
N i [
pls™(2) 11 + ?—;:_‘—5 I:i:l = D{H,b,e,¥) + Hfir)ydr
o

“"1 ”t',ﬁ o)

L
< DH by f Hi{ ﬂdr—f ‘: (k; + r%"‘—) V(z,{)dz,

] 1] "
“D(H,b,,4) = plb (1 s ?) i fﬂ Lkuta) WS

| k
+.[¢ o (k, + 1?—[) L ET P

F i
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4. DISAPPEARANCE OF A PHASE

this section we discuss the relation between Lhe disappearance of a phase and

In : ..
the total encrgy supplied to the tnedia. We use the following definitions:

v[:]
} oy

Yiz
(Fcl - i—‘llH:) HL!), by = = < oo,

ik + iz 0<z< by,

Pz} =

Tyminf{t*, ¢* > 0, s"() =dor (') = ; 5} 0= d<by
1o = sup {T;]-,
Bedehy
Wi r = !
Q(t) = plb” (1—: - ) f B(z)dz + [ Hf()dr.
2k B Jo
From now on, we write s = 5% = 5 for convenience in the notation.

Theorem G. [0 < Q(t) < oo for all t > 0, then Ty = o, which meuns the! neilher
phase disappears in @ finite lime period.

Proof. Suppose 1y <0 oo, then there exists a sequence {4;} with limg Ty, = 1y,
such that s(Ti,) = Dor s(Ts,} = oo as & = Qor § —+ &7, Suppose s(T;) = 0 as
& = 0, then usiug the integral representation of Lemma 2, we aliain

e -b” o -T_;I.
.P“ETJ "| (! 4 ;LT¢ ) = lr;”l” (] + ﬁ") t f 'T:'{I}{.IIJ' -|-j Hf[‘:}l:.!-"
0 o

o1} (
- [ e e g

= n "
- ] (k: g 'H) ied
oTs) ky oy

> Q(Ts) - j:{ (o + )52t (, }dx,

pIS(TL)(1 + L J) < omy - {h + —}-ﬁ-._d:,

o he ulumptmn of the thq.::-rcrn H
















