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Abstract. In this note we present, a review of some aspects on the problem
of restricting square integrable representations of a semisimple Lie group to
reductive subgroups.

1. Introduction.

An important problem in representation theory of Lie groups is to understand
”branching laws”. That is, given a unitary representation, (π, V ) of a Lie group
G, to describe the restriction of π to a Lie subgroup H of G as direct integral of
unitary irreducible representations of H. In formulae, is to write down as explicit
as possible a unitary, bijective, linear, H−map

π|H →
∫

i∈Ĥ

m(i) Vi dµ(i).

In this note we will be concern in understanding ”branching laws” under the setting:
G is a connected, semisimple and finite center Lie group;

(RDS) H is a closed connected reductive subgroup of G; and
(π, V ) is an irreducible square integrable representation of G.

Certainly, this problem has many aspects and has been studied by many authors.
In particular, T. Kobayashi in [13] [11] [12] [15] has proven substantial results that
apply to our particular problem. Moreover, Gross-Wallach in [5] have studied this
problem, obtaining explicit results in case of quaternionic discrete series represen-
tations.

Whenever (G,H) is a generalized symmetric pair, Kobayashi has given neces-
sary and sufficient conditions for the restriction of an irreducible square integrable
representation to have an admissible restriction to H. In this note we study problem
(RDS) under two different point of views. One is by means of the explicit realiza-
tion of a square integrable representation as an eigenspace of the Casimir operator,
i.e. Hotta’s realization, c.f. [9] [18]. In joint work with Bent Orsted we obtained
information on the discrete spectrum of π|H . In order to describe the results we
set up some notation. Throughout this note K is a fixed maximal compact sub-
group of G such that L := H ∩K is a maximal compact subgroup of H. We write
g = k + s = h + q the Cartan decomposition of the complexification, g, of the the
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Lie algebra of G and the respective Ad(H)−invariant decomposition associated to
h. Henceforth, (π, V ) , will denote a square integrable irreducible representation of
G. For a proof of the next statement we refer to [18].

Theorem 1. The discrete spectrum of π|H is contained in the discrete spectrum
of ⊕

m≥0

L2(H ×H∩K (Sm(q ∩ s)⊗W )).

Here, Sm(Z) denotes the mth−symmetric power of the vector space Z, W is the
lowest K−type of (π, V ) and L2(...) indicates the space of square integrable sections
of the homogeneous vector bundle

H ×H∩K Z −→ H/H ∩K

induced by a representation of H ∩K on a vector space Z.
Theorem 1 is a consequence of the (2,2)-continuity of the Berezin transform and its
generalizations by means of normal derivatives for the immersion H/H∩K ↪→ G/K.
c.f. §3.
As an example, we consider G = Spin(2n, 1),H = Spin(2k)×Spin(2n−2k, 1), 1 ≤
k < n. Since L is the product of two groups, we may write the restriction to L of
the lowest K−type of (π, V ) as

⊕jWj ⊗ Zj , Wj ∈ ̂Spin(2k), Zj ∈ ̂Spin(2n− 2k).

Also, a discrete factor of π|H is of the form X ⊗Z with X (resp. Z) an irreducible
representation of Spin(2k) (resp. Z an irreducible square integrable representation
of Spin(2n− 2k, 1). Then, the highest weight of X is of the type (r, 0, . . . , 0) plus a
weight of Wj and Z is such that some Spin(2n− 2k) type of Z is a Zj . For a proof,
c.f.[18].

The second point of view is joint work in progress with Michel Duflo. As sug-
gested by Duflo, we consider the moment map

ph : Ω → h?

of the coadjoint orbit, Ω, of G determinate by the Harish-Chandra parameter as-
sociated to a given square integrable representation (π, V ) c.f. §4.
In particular, we show,

Theorem 2. For a generalized symmetric pair (G,H) , we have that
π|H is admissible if and only if ph is a proper map.

Secondly, to (π, V ) , Harish-Chandra has associated a system of positive roots Ψ
in a compact Cartan subgroup of G contained in K c.f. §4. Let z denote the center
of k. Then, in [3] we construct an ideal k1(Ψ) of k so that

Proposition 1. (π, V ) restricted to k1(Ψ) + z is admissible.

For each simple group G and for every Ψ, in [3], we compute the subalgebra k1(Ψ).
Finally, let βΩ denote the Liouville measure on the orbit Ω. When ph is a proper
map, and hence, π|H is admissible we obtain a relation between the multiplicity of
the irreducible factors of π|H and the push-forward of the measure βΩ, generalizing
Theorems of Duflo-Heckman-Vergne for the case H = K and results of Heckman
in the case G = K and H = L. c.f. [2], [8].
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2. Some examples on the problem of restricting discrete series.

Let us recall that a unitary representation π|H of a connected reductive group
H is unitarily equivalent to a direct integral decomposition into irreducible unitary
representations. That is, there exists a Borel measurable function m : Ĥ → [0, +∞]
(the multiplicity function), a representative (πi, Vi) of each i ∈ Ĥ and a Borel
measure µ on Ĥ so that π|H is unitarily equivalent to the direct integral

∫

i∈Ĥ

m(i)Vi dµ(i).

By definition, a discrete factor of π|H is i ∈ Ĥ so that µ(i) > 0. In this case, we
have that m(i) = dimHomH(Vi, V ). The discrete spectrum of π|H is the closure of
the linear subspace of V defined by the image in V of the obvious map from

⊕{i:µ(i)>0}HomH(Vi, V )⊗ Vi.

A representation of H is admissible whenever it is equal to its discrete spectrum and
the multiplicity of each irreducible factor is finite. In [13] it is shown that whenever
(π, V ) is a square integrable representation of G, then the discrete factors of π|H are
again square integrable representations and the support of measure µ is contained
in the set of tempered representations of H.

We now state a result on the existence of discrete spectrum, or, equivalently of
discrete factors for π|H . We denote by (τ, W ) the lowest K−type, in the sense of
Vogan or Schmid, [21], [7] of (π, V ) . Let (σ,Z0) denote an irreducible factor of the
restriction of τ to L.

Theorem 3. Assume there exists a square integrable and irreducible representation
(ρ, Z) of H so that its lowest L−type is equivalent to (σ,Z0). Then, (ρ, Z) is a
discrete factor of π|H .

For a proof c.f. [19].
For example, when G/K is a Hermitian symmetric space, H so that H/L is a real
form of G/K and (π, V ) is a holomorphic or antiholomorphic representation of G,
then the whole discrete spectrum of π|H is given by Theorem 3. Since, in this case
we actually show that π|H is unitarily equivalent to ' L2(H ×L τ|L). For a proof,
c.f.[20].

Kobayashi in [11] has shown that whenever π|H is admissible, then all the
discrete factors of π|H have the same the associated variety. When we consider
G = Spin(2n, 1), 2 ≤ n, H = Spin(2, 1) imbedded in the obvious way, Theorem 3
gives us examples of discrete factors of π|H which have distinct associated variety.
c.f. [18].

Next, we show two results on multiplicities of discrete factors.

Proposition 2. Let (π, V ) be a square integrable irreducible representation of
Spin(2n, 1). Then,
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i) The multiplicity of any discrete factor of (π, V ) restricted to Spin(2k) ×
Spin(2n− 2k, 1) is finite.

ii) If k > 0, the multiplicity of any irreducible factor of the restriction of
(π, V ) to Spin(2n− 2k, 1), is infinite.

For a proof c.f. [18].
In order to continue, we fix compatible Iwasawa decompositions for Spin(2n, 1) =

KAN, Spin(2n− 1, 1) = LAN1 and let M denote the centralizer of A in L. Since
L = Spin(2n− 1),M = Spin(2n− 2), we have that rank of L is equal to the rank
of M. We fix compatible orders in a maximal torus of M (or L), and hence, we
may and will associate to each irreducible representation µj of L an irreducible
representation σj of M having the same highest weight.

Let (π, V ) be an irreducible square integrable representation of Spin(2n, 1) and let
(τ, W ) denote its lowest K−type. We have,

Proposition 3. We decompose τ|L = µ1 ⊕ · · · ⊕ µr as a sum of irreducible repre-
sentations of L. Then

π|Spin(2n−1,1) '
r∑

j=1

∫

a?

Ind
Spin(2n−1,1−
MAN (σj ⊗ eiν ⊗ 1)mj(ν)dν.

Moreover, 0 ≤ mj(ν) < ∞, for every j, ν.

For a proof c.f. [19]. We actually show that π|H is unitarily equivalent to a
subrepresentation of L2(H ×L τ|L) and determine the image of the intertwining
map.

3. Berezin transform and discrete spectrum.

Let G,H, K,L, (π, V ) be as before. Thus, (π, V ) is a square integrable irre-
ducible representation of G. Let (τ, W ) be the lowest K−type of (π, V ) in the sense
of Schmid or Vogan, c.f. [7], [21], [9] . After the work of Hotta and Paratharasathy
(π, V ) is unitarily equivalent to the representation (R, H2(G, τ)) constructed as fol-
lows. Let Ω̄ denote the Casimir operator acting on L2(G ×K W ) as an essentially
self adjoint elliptic differential operator. Let Λ be the Harish-Chandra parameter
of (π, V ) and let ρ that corresponds to the Weyl chamber containing Λ. c.f. §4 .
Let

H2(G, τ) = {f ∈ L2(G×K W ) : Ω̄(f) = [(Λ, Λ)− (ρ, ρ)]f}
and let R denote the right regular action of G on L2(G ×K W ). Then Hotta has
shown that (π, V ) is unitarily equivalent to (R,H2(G, τ)). Because of the regularity
theorem for elliptic systems of equations, H2(G, τ) consists of real analytic sections.
Therefore, we may restrict an element in H2(G, τ), as well the normal derivatives of
an element in H2(G, τ) to the submanifold H/L. Because of our choice of maximal
compact subgroups, the homogeneous bundle H ×L τ|L → H/L is a subbundle of
G×K W and, hence, the restriction of an element of H2(G, τ) to H/L is a smooth
section of the bundle H ×L τ|L → H/L.
For each m ≥ 0, let

rm : H2(G, τ) → C∞(H ×L (Sm(q ∩ s)×W ))
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denote the linear map that associates to each f ∈ H2(G, τ) the function rm(f) on
H which takes on values on Sm(q ∩ s)⊗W defined by

rm(f)(h) =
∑

α1+···+αn=m

`X
α1
1 X

α2
2 ···Xαn

n
(f)(h).

Here, X1, · · · , Xn is a basis of q ∩ s and ` denotes left infinitesimal differentiation
after we symmetrize Xα1

1 Xα2
2 · · ·Xαn

n . As pointed in the previous paragraph it
readily follows that rm(f) is a smooth section of the bundle H×L (Sm(q∩ s)⊗W ).
Besides, rm intertwines the respective representations of H. We have,

Theorem 4. For every m ≥ 0,

i) rm(H2(G, τ)) is contained in L2(H ×L Sm(q ∩ s)⊗W ).
ii) rm : H2(G, τ)) → L2(H ×L Sm(q ∩ s)⊗W ) is a continuous linear map.
iii) If (R, Z) is a discrete factor of π|H , then there exists k ≥ 0 so that

rk(Z) is nonzero. Therefore, a discrete factor of π|H is a discrete factor
of L2(H ×L Sk(q ∩ s)⊗W ) for some k.

iv) If we further assume that (π, V ) is integrable, then rmr?
m is (p,p)-continuous

for every p in the interval [1,+∞).

For a proof c.f. [18].
The Berezin transform is the linear operator r0r

?
0 . We note that Item iv) generalizes

results of G.K. Zhang [23].

4. Moment map and admissibility.

In this section we will denote the Lie algebra of a Lie group by the corresponding
German lower case letter. To denote the complexification of a Lie algebra we add the
subscript C. We fix T a maximal torus in K. Since we are assuming that G admits
square integrable representations, because of the work of Harish-Chandra, we have
that T is a Cartan subgroup of G. Let Λ ∈ it? be the differential at the identity of
a character of T. We will denote by WL(T ) ⊂ it? the lattice of such Λ′s. Let us
recall that λ ∈ t? is regular if its centralizer in G is T. We denote by WL(T )reg the
regular elements in WL(T ). Let W denote the Weyl group of T in G, equivalently
W is the quotient of the normalizer of T in K by T. The parameterization, due
to Harish-Chandra, of the set of equivalence classes of irreducible square integrable
representations of G is by means of the set of orbits of W in WL(T )reg. Let (..., ...)
the inner product on it? constructed from the Killing form of g. Let Φ = Φc ∪ Φn

denote the set of roots of tC, Φc the compact roots and the Φn noncompact roots.
Let (G,H) be a generalized symmetric space and let σ denote the involution whose
fixed point set is the Lie algebra of the group H. Thus, σ leaves k as well as s
invariant and l := {X ∈ k : σX = X} is a maximally compact embedded subalgebra
of h. Following T. Kobayashi we choose a maximal torus T so that

σ(t) = t.
tσ− = {X ∈ t : σX = −X}.

is a maximally split Cartan subspace for the pair (K, L). Once and for all, we fix a
system of positive roots ∆ ⊂ Φc such that {α|tσ

− 6= 0} is a system of positive roots
for the restricted root system (k, tσ−). Thus, a cross-section for the set of orbits of
W in WL(T )reg is given by

WL+ := {Λ ∈ WL(T ) : (Λ, α) > 0, ∀α ∈ ∆}.
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For Λ ∈ it?, let λ := (−i)Λ ∈ t?. As usual, we think of the elements of t? as the
linear functional on g extended by zero on the orthogonal complement of t. Thus,
we may consider

Ω := Ad?(G) · λ
the coadjoint orbit of λ. Let

ph : Ω → h?

denote the restriction map. Each Λ ∈ WL+ determines a system of positive roots
for Φ, namely,

Ψ := {α ∈ Φ : (Λ, α) > 0}.
Hence, ∆ ⊂ Ψ. Let Ψn := Ψ ∩ Φn. Following T. Kobayashi we consider the proper
cone

R+Ψn :=
∑

β∈Ψn

R≥0β.

In [3] we find a proof of:

Theorem 5. Let (G,H) be a generalized symmetric pair and let Ω be a coadjoint
orbit trough λ ∈ t?. Let Λ := iλ and assume that Λ is dominant for Ψ. Then,

ph : Ω → h? is a proper map if and only if R+Ψn ∩ itσ− = {0}.
For a proof, c.f. [3].

Next, let (πΛ, VΛ) denote the irreducible square integrable representation of G
attached by Harish-Chandra to Λ ∈ WL+. We may show,

Theorem 6. The restriction of (πΛ, VΛ) to H is an admissible representation if
and only if ph : G · λ → h? is a proper map.

Let us recall that an element X of g? is strongly elliptic if its centralizer in G is
a compact subgroup.

Theorem 7. Let (G,H) be an arbitrary reductive pair in the sense of [15]. Then,
whenever ph : Ω → h? is a proper map the set ph(Ω) is contained in the set of
strongly elliptic elements of h?.

For a proof c.f. [3].
We now consider T1 ⊂ T a maximal torus of L and a coadjoint orbit so that

ph → h? is a proper map. Thus, Theorem 7 shows that ph(λ) 6= 0. We fix Cλ,t?
1 ,+

a closed Weyl chamber for the pair (l, t1) such that ph(λ) is dominant with respect
to Cλ,t?

1 ,+ . We have

Theorem 8. There exists a unique open Weyl chamber Cλ,+ for (h, t1) so that
i) Cλ,+ is contained in Cλ,t?

1 ,+

ii) ph(Ω)∩ Cλ,t?
1 ,+ is contained in the relative closure of Cλ,+ in Cλ,t?

1 ,+ .

For a proof c.f. [3].
The second statement of Theorem 8 let us apply a Theorem of Weinstein [22]

and obtain

Proposition 4. When ph is a proper map, then ph(Ω)∩ Cλ,t?
1 ,+ is a convex set.

Theorem 8 has the following nice consequence
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Proposition 5. Assume that (πΛ, VΛ) has an admissible restriction to H. Then,
the Harish-Chandra parameters of the irreducible factors of π|H lie in a unique
Weyl chamber for (h, t1).

For a proof c.f. [3].
This proposition generalizes the following facts: If a holomorphic (quaternionic) dis-
crete series representation has an admissible restriction to H, then, the H−irreducible
factors are holomorphic (quaternionic) discrete series for H. For a proof of these
two statements c.f. [17],[16].

5. The subgroup k1(Ψ).

Let G,K, t, W, Λ, λ, Ψ be as in the previous section. Let k denote the Lie algebra
of K. We denote by uΨ the linear subspace of s spanned by the root vectors on the
noncompact roots in Ψ. Thus, [uΨ, uΨ] is a linear subspace of kC. It readily follows
that the ideal of kC spanned by [uΨ, uΨ] is the complexification of an an ideal in k.
From now on, we denote this ideal of k by k1(Ψ).

In [3] we have computed the ideal k1(Ψ) for each simple real Lie algebra having a
compactly embedded Cartan subalgebra. That is, when G has a nonempty discrete
series.

Let z denote the center of k. We fix Λ ∈ WL+ and let Ψ the system of positive
roots that makes Λ dominant.

Proposition 6. Let λ := −iΛ and Ω = Ad?(G) · λ. Then, the moment map (i.e
the restriction map) p : Ω → k1(Ψ)? + z? is proper.

For a proof c.f. [3]. Therefore, if (πΛ, VΛ) is the square integrable representation
attached to Λ and H is so that k1(Ψ) + z ⊆ h, then (πΛ, VΛ) restricted to H is
admissible. In particular, whenever k is a semisimple Lie algebra, we have that
(πΛ, VΛ) has an admissible restriction to k1(Ψ).

Proposition 7. We further assume that L := K ∩H is normalized by T. Then,
k1(Ψ) ⊆ l if and only if for each w ∈ W, wΨn ∪Ψ(k/l) is contained in an open half
space of it?.

Here, Φ(r/p) is the set of roots of t so that its root space is contained in the quotient
of t invariant subspaces p ⊆ r. This proposition allows us to prove an analogue of
the theorems of Heckman and Duflo-Heckman-Vergne which determine the push-
forward of the Liouville measure on Ω, c.f. [8], [2].

6. Push-forward of the Liouville measure.

We keep the notation of the last two sections. In order to simplify the exposition
we further assume for this section that T is a maximal torus of L. Thus,

T ⊂ L ⊂ K.

Let βΩ denote the Liouville measure on the coadjoint orbit Ω = Ad?(G) · λ. This is
G invariant measure on Ω. For details c.f. [2] . From now on, we suppose that ph is
a proper map. Therefore, ph(Ω) is contained in the set of strongly elliptic elements
of h?. Furthermore, Heckman in [8] has shown that either ph or pl are submersions
on an open dense subset of Ω whose complement has Lebesgue measure zero. For
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a closed subgroup U of G so that T ⊂ U, we denote the Liouville measure of the
coadjoint orbit U · ν, evaluated on a test function ϕ, by

βU ·ν(ϕ) := AU (ϕ)(ν) =
∏

α∈Ψ(u)

(α, ν)
∫

U

ϕ(Ad(u) · ν)du.

Here, du is a conveniently chosen Haar measure on U. For the constants involved
and proofs we refer to [1], Chapter VII.
Therefore, for u equal to either h or l, there exists functions

Γg,u : t? → R

so that the push-forward, (pu)?(βΩ) of the measure βΩ by pu is given by

(pu)?(βΩ)(ϕ) := (pu)?(βG·λ)(ϕ) =
∫

t?

Γg,l(µ)AU (ϕ)(µ)dµ.

Here, dµ is a convenient Lebesgue measure on t? and ϕ is a test function on t?.
Moreover, Γg,u is a smooth function on the set of regular values of pu. For each root
β ∈ Φ(g, t) let Y−iβ be the Heaviside generalized function on t? associated to −iβ.
Thus,

Y−iβ(ϕ) =
∫ ∞

0

ϕ(t(−iβ))dt.

We define, the convolution product of distributions,

Y +
n = Fβ∈ΨnYβ/i, Y +

k,l = Fα∈Ψ(k/l)Yα/i.

In [6] we find a proof that our assumption on Ψ imply that the convolutions in the
following statement are well defined.

Proposition 8.
Γg,l =

∑

w∈W

ε(w)δwλ ? w(Y +
n ) ? Y +

k,l.

Γg,h =
∑

w∈W

ε(w)d(w)δwλ ? [Fβ∈wΨn∩Φ(g/h)Y−iβ ] ? Y +
k/l

Here, d(w) = (−1)card[wΨn∩Φ(g/h)].

Similarly to Lemma 6.1 [8] of Heckman we have that the functions Γg,l, Γg,h in
Proposition 8 are solutions to differential equations and that Γg,h is a derivative of
Γg,l. More precisely,

Proposition 9. Γg,l is a solution to the equation in θ ∈ D′(it?)
∏

α∈Ψ(g/l)

∂

∂(iα)
θ =

∑

w∈W

ε(w)δwλ

whereas Γg,h is a solution to the equation in θ ∈ D′(it?)
∏

α∈Ψ(g/h)

∂

∂(iα)
θ =

∑

w∈W

ε(w)δwλ

and

Γg,h =
∏

α∈Ψn∩Ψ(h,t)

∂

∂(iα)
Γg,l.
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The last statement reflects the fact that when we restrict discrete series represen-
tations and the restriction is admissible, then the multiplicities of the L irreducible
factors determine the multiplicities of the H irreducible factors. For details and a
proof c.f. [3].
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