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Abstract. In this note,

1. Admissible restriction to L which does not contain K1(Ψ)

Example 1: Let G = SO(2n, 1) and L a copy of U(n) contained in SO(2n), then any discrete
series for SO(2n, 1) has an admissible restriction to U(n).

In order to show the statement we need some notation and facts. We fix t a maximal torus
in so(2n). Hence, t is a Cartan subalgebra of so(2n, 1) and there exists an orthogonal basis
ε1, · · · , εn of it? so that

Φk = {±εi ± εj, i 6= j}, Φn = {±εj}.
Let Yα be root vectors associated to a root α in such a way

Ȳα = −Y−α, α ∈ Φk, Ȳα = Y−α, α ∈ Φn, [Yα, Y−α] =
2

(α, α)
Hα.

Therefore, tC together with {Yα, α ∈ {±(εi−εj)}} span a subalgebra which is the complexication
of subalgebra l isomorphic to u(n).

Next, we describe the associated variety of an irreducible square integrable representation
of SO(2n, 1). For this we recall pC =

∑
1≤i≤nCY±εi

, the representation of SO(2n) in pC is
the first fundamental representation and the Killing form is B(

∑
zjYεj

+
∑

wkY−εk
,
∑

zjYεj
+∑

wkY−εk
) = 2

∑
zjwj. The orbits of SO(2n,C) in pC are

{B(Y, Y ) = c, } c 6= 0; {B(Y, Y ) = 0, Y 6= 0}; {0}
The nilpotent cone N is B(Y, Y ) = 0, its dimension is 2n − 1. In [?] we find a proof that
the dimension of the associated variety of a discrete series for SO(2n, 1) is 2n − 1, hence, the
associated variety of a discrete series for SO(2n, 1) is N. [?] has shown that the associated
variety of a discrete series is Ass(π) := Ad(KC)(

∑
−β∈Ψn

CYβ) and the ideal which defines the
associated variety is a radical ideal. Another piece of information we need is a Theorem of
Huang-Vogan [?] which shows that for a compact subgroup L of K, a discrete series π has an
admissible restriction to L if and only if C[Ass(π)] is an admissible L−module, in turn, because
of the Hilbert-Godement Theorem [?], and its generalization to affine irreducible varieties due
to Vergne, Knopp, this is equivalent to C[Ass(π)]L = C. We now verify C[Ass(π)]U(n) = C.
Let V denote the first fundamental representation of U(n), then as a representation for U(n)
pC = V ⊕ V ?. Here, V =

∑
CYεj

, and by mean of the Killing form V ? =
∑
CY−εj

. Let
e(v +λ) = λ(v), v ∈ V, λ ∈ V ?. Then e is a polynomial function on pC which is U(n)−invariant.
We notice that e(N) = 0. Besides, owing to classical invariant theory we have that C[pC]

U(n) =
C[e]. Thus, if p ∈ C[As(π)]U(n), choose q ∈ C[pC]

U(n) so that q|N = p. Thus, p is constant and
we have shown that π restricted to U(n) is admissible. We would like to point out that the
same statement follows if we apply Theorem..As(π) ∩ it?− = 0....in Kob or from the fact that
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in this case C[N] = Ind
SO(2n)
SO(2n−1)(Trivial rep.) =

∑
k Vkε1 , next we apply the Mackey restriction

Theorem and finally the Theorem of Huang Vogan cited previously.

Example 2: Let Spin(9) → SO(R16) denote the spin representation, we identify Spin(9) with
its image in SO(16). We claim that a discrete series for SO(16, 1) has an admissible restriction
to Spin(9). The same result holds for the spin representation Spin(7) → SO(8) and a discrete
series for SO(8, 1).

In order to verify the statement, we recall that for both cases, C?×Spin(2k+1) acting on C2k

is a multiplicity free representation. We now recall the structure of C[C2k
] as a C?×Spin(2k+1)

module. For C?×Spin(7) the highest weight vectors of an irreducible subrepresentation of C[C8]
are the polynomials hk1

1 hk2
2 , kj ≥ 0 where h1 is a highest weight vector for the spin representation

of Spin(7), h2 is a nonzero invariant quadratic form on C8. Since both h1, h2 are irreducible
polynomials, we obtain that C[N] =

∑
k≥0 V k

2
(ε1+ε2+ε3) where V k

2
(ε1+ε2+ε3) denotes the irreducible

representation of Spin(7) of highest weight k
2
(ε1 + ε2 + ε3). Therefore, the action of Spin(7) in

C[N] is admissible. The theorem of Huang and Vogan lead us to the admissibility statement.

For the case Spin(9) → SO(R16) the highest weight vectors of an irreducible subrepresen-
tation of C[C16] are the polynomials hk1

1 hk2
2 hk3

3 , kj ≥ 0 where h1 is a highest weight vector
for the spin representation of Spin(9), h2 is a highest weight vector for the first fundamen-
tal representation in C9, degree of h2 is two, h3 is a nonzero invariant quadratic form on C16.
Since h1, h2, h3 are irreducible polynomials, we obtain that C[N] =

∑
kj≥0 V k1

2
(ε1+ε2+ε3+ε4)

⊕Vk2ε1

where Vγ denotes the irreducible representation of Spin(9) of highest weight γ. Therefore, C[N]
is admissible as Spin(9)−module.

Example 3: Let M be a complex connected reductive Lie group and ρ : M → GL(Cn) a
prehomogeneous space. This is equivalent to M has a dense orbit in Cn. Thus, C[Cn]M = C.
Next, we consider the group SU(n, 1) and a holomorphic discrete series (πΛ, VΛ) for SU(n, 1).
A Cartan decomposition for SU(n, 1) is

su(n, 1) = k⊕ (Cn ⊕ (Cn)?).

Let L̃ denote a compact real form of ρ(M) so that L̃ ⊂ U(n) and set L ⊂ K the inverse image
of L̃ by ”half of the isotropy representation” We claim,

πΛ restricted to L is admissible.

In fact, we may arrange matters so that the associated variety of πΛ is equal to Cn. Since
C[Cn]M = C a theorem of Huang and Vogan forces that πΛ restricted to L is admissible.

We would like to point out that whenever G has a center of positive dimension, this example
follows from the fact that holomorphic discrete series has an admissible restriction to the center
of K and that then the center of K is contained in L. However, there are many examples
prehomogeneous spaces where M is a semisimple Lie group. Some of them includes triples
(ρ,M, V ) such that the action of M on the symmetric functions of V is multiplicity free. Sato
and Kimura have written the list of prehomogeneous (ρ,M, V ) where G is semisimple and V
is an irreducible representation. The list is:

(The list has repetitions because, some of them are multiplicity free space and others are
not.)

SLn × SLm,Cn ⊗ Cm, m
2
≥ n ≥ 1, Mult. free are SL1 × SLm

SL2m+1, Λ
2(C2m+1) This is mult. free

SL2n+1 × SL2, Λ
2(C2n+1)⊗ C2,

Sp(n)× SL2m+1,C2n ⊗ C2m+1, n ≥ 2m + 1 Mult. free is Sp(n)× SL1.
Spin(10), half spin rep in C16 Multiplicity free
Sp(2)× SLm,m ≥ 5 Multiplicity free
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G× SLm,Cn ⊗ Cm,m ≥ n ≥ 1, G semismple and irreducible action on Cn.

Example 4: This example is a byproduct of example 3. Let Mj ⊂ GL(Cnj , j = 1, · · · , k be
reductive subgroups so that C[Cnj ]Mj = C. Set M = M1× · · ·Mk. From this M construct L as
in example 3. Then a holomorphic discrete series for SU(n, 1) has an admissible restriction to
L. This follows from the equality

C[Cn]M = C[Cn1 ]M1 ⊗ · · · ⊗ C[Cnk ]Mk

Question for Rubenthaler or...???
What are the reductive subgroups M ⊂ GL(n,C) so that
— M leaves invariant a nondegenerate quadratic form b
— C[Cn]M = C[b].
From the list of prehomogeneous spaces of Kimura and Sato Kimura I have extracted three

examples of this question, they are the ones that we consider en example 1 and example 2.
A discrete series for SO(2n, 1) has an admissible restriction to the compact real form of such

an M, pulled back to SO(2n)
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