
Some portable very-long-period random number generators
George Marsaglia and Arif Zaman
Super-computer Computations Research Institute and Department of Statistics,
The Florida State University Tallahassee, Florida 32306
(Rccei\vd II December 1992; accepted II February 1993)

It is found that a proposed random number generator r an2, recently presented in the Numerical
Recipes column [W. H. Press and S. A. Teukolsky, Comput. Phys. 6, 521-524 (1992)], is a good
one, but a number of generators are presented that are at least as good and are simpler, much faster,
and with periods “billions and billions” of times longer. They are presented not necessarily to
supplant ran2, but to put it in perspective. Any serious user of Monte Carlo methods should have
a variety of random number generators from which to choose. In addition to two specific programs,
one in Fortran and one in C, a framework is offered within which the readers can easily fashion
their own generators with periods ranging from 1027-10101.

NfRomlcTuml

In the Numerical Recipes column of this Journal, the Edi-
tors, Press and Teukolsky, presented a portable random
number generator, ran2 (Ref. 1). Since we have come to
expect good things from the Numerical Recipes Project,
rani! is likely to be widely used. That’s o.k., it is a good
generator. But approval through that column invites con-
structive dissent; we offer some here.

Our comments relate mainly to the algorithms used in
r an2. They were suggested by L’Ecuyer.* Implementation
of the algorithms was provided in the Numerical Recipes
column, and they are discussed in more detail in the Edi-
tors’ book(s), Numerical Recipes in Fortran(C,L3

We first suggest considerations that might have made
ran2 better. Then we suggest several alternatives that are
simpler. faster, and have longer periods.

The appellation “portable” is not precise. It generally
means that the program will compile and run properly on
most computers, but brevity and simplicity are implicit cri-
teria. The essence of ran2’s portability is the means to
carry out modular arithmetic on 31-bit integers without
overflow on multiplication. This is necessary for users not
wanting to-or not willing to-use the automatic integer
arithmetic modulo 2”’ that is built into most modern 2’s
complement CPU’s.

But circumventing the CPU’s built-in capabilities does
not come cheap--at least for ran2. It uses three integer
divisions, six limited multiplications, and from four to six
additions for each random number, as well as the manipu-
lations necessary to address, fetch, and store elements in a
table.

The built-in arithmetic modulo 232 that most modern
CPU’s provide is, in our view, a great asset that should be
exploited for random number generation. The authors of

ran2 view its use as “abusing the compiler,” although
their remark may have been tongue-in-cheek. So we will
suggest methods for two levels of “portability”: one-for
the timid or disadvantaged-that circumvents multiplica-
tive overflow in what we think is a much simpler way than
that of ran2; and the other for those millions of users who
can take advantage of such a marvelous way of generating
a nearly satisfactory random number by means of a simple
statement such as n=b90b9*n. This latter method is often
the one that is implemented in system generators---for ex-
ample, in CDC’s and Vax’s, but by modern standards the
period is too short and trailing bits are unsatisfactory.

Taking advantage of such a remarkably simple, fast
and nearly satisfactory method for our first step, then com-
bining it with one of a number of simple very-long-period
generators based on addition or subtraction, provides a
composite generator that we rank highly in categories of
speed, simplicity, very long periods and satisfactory perfor-
mance on tests of randomness. We hope that-after reading
this and perhaps trying some of your own versions-you
will agree.

We provide a number of ways to achieve such combi-
nations. And a simple fix allows them to be used with com-
pilers that forbid overflow on 32-bit multiplication.

In using a deterministic sequence to simulate random-
ness we are all, as Von Neumann said, “in a state of sin.”
Every deterministic sequence will have problems for which
it gives bad results, and a researcher should be able to call
on a variety of random number generators for comparing
results. While interesting theory can lead to new kinds of
random number generation, in the end it is, alas, an empiri-
cal science. Only through collective experience can we
hope to reach a state where we may “go forth and sin no
more.”

COMPUTERS IN PHYSICS, VOL. 8, NO. 1, JAN/FEB 1994 117

The generator ran2 uses two 31-bit congruential se-
quences: x,, x2, x3 ,... and y,, y,, y, ,... . It keeps the
x’s shuffled in a table: iy(1) ,...,iy(32). To get a new ran-
dom 31-bit integer, it generates a new y, uses y to form j in
{1,...,32} with an integer division and an add, outputs
iy(j) -y and stores a new x in location j. (Note that index-
ing the table from 0 to 31 would save an addition when
forming j, while “and”-ing y with 31 would be a much
faster way to produce a j.)

The key device of ran?, in our view, is subtraction of
the elements of the two congruential sequences. There is
considerable empirical evidence, and theoretical support,
for the belief that combining two simple random number
generators produces a better generator. See, for example,
Ref. 4. We prefer to combine sequences with two entirely
different algebraic structures, rather than two congruential
sequences, as in r an2. And we think a satisfactory combi-
nation can be provided with much less cost than in ran2.

As for the shuffling: It helps. One of us (GM) invented
it in the early 196Os, but abandoned it later. If you go to the
trouble of maintaining a table of recent random numbers
and indices, you might as well get the benefits of equally
good results and far longer period with lagged Fibonacci or
subtract-with-borrow4T5 or some such method. (With a table
of 32 words you can get a period on the order of 2’024
rather than the 2”2 of ran2. One of our examples below
provides a period of 2309 from a table of ten 31-bit inte-
gers.)

Still, if you prefer the simple shuffle used in ran2,
outputting differences, you have the choice of the two con-
gruential sequences. In r a n2 they are

x,=40014x,-t mod 23’-85

and

y,=40692y,-, mod 231-249.

We suggest that you might consider
(1) Using moduli of 32 rather than 31 bits. This takes

advantage of the full computer word, and it costs no
more-indeed, often less. In high-level languages that view
negative integers as those with leading bit 1, you then get
random signed integers, which may be floated to get uni-
form reals on either (0,l) or (-1,l). The latter are more
desirable in many simulations.

(2) If you still want prime moduli of 31 bits, why not
make then safeprimes, and choose the multipliers to pro-
vide fast implementation? A safe prime p is one for which
(p- 1)/2 is also prime. Then half of the residues of p are
primitive roots. Factors of p- 1 are undesirable; they pro-
vide periodic subsequences of the full period. If 2 is a
primitive root of a safeprime p, then so is every odd power
of 2, providing multipliers that simplify the generating pro-
cedure. If the generators are to be used in combinations,
their lattices are of no importance. The two greatest safep-
rimes of 31 bits are 231-69 and 231-535. Both have 2 as a
primitive root, so any odd power of 2 may be used as a
multiplier, providing overflow-free multiplication by a
shift, and thus avoiding the manipulations of ran2. The
two largest safeprimes of 32 bits are 232-209 and

2”‘- 1409. While 2 is not a primitive root of either, 2”+ 1
is for the larger and 214- 1 for the smaller one, as are others
within +l of a power of 2. They provide overflow-free
multiplication by means of shifts and adds.

(3) Whatever method you use to generate and combine
two sequences, there is the problem of how to handle argu-
ments and returned values in the resulting subroutine. With
the Fortran r an2 you use r an2 (i d u ar) in expressions in
the main program, initializing with idum negative. The
value of idum is maintained in the main program and
changed by the subroutine ran2, which is delivered an
address rather than a value. Thus ran 2 can only be called
from the main program. The subroutine must deal with both
an argument idum and the returned value for ran2. Ineffi-
cient. The modern trend for random number generators is to
call them with an empty argument list, such as
u = ran 2 (1. The problem of initializing is handled by an
entry point in the subroutine, and default entry values are
put in the subroutine to make its use fool proof. We illus-
trate such a structure in our program mzran, below.

(4) There is another point that bears consideration. Us-
ers of a random number generator might want a random
positive integer, a random signed integer, a random real on
[O,l) or on (-l,l), or even a random byte for addressing a
table. All these can be provided if the underlying generator
is for 32- rather than 31-bit integers, as mentioned above,
but even if the generator produces a 31-bit integer, the prac-
tice of multiplying by .5**31 then returning a real on
[O,l) (or (0,l) after a fix), “wastes” many of the bits of
the integer, and makes reconstructing a (necessarily lim-
ited) random integer costly. Why not have the subroutine
return an integer (preferably, a signed integer), as, say,
ir an2 () ? Then users would have the full capabilities
of generating random integers or masked parts of integers,
or uniform reals UN1 on [O,l) or VNI on (-1,l) by
the simple expedient of Fortran statement functions
such as UNI(1 =.5+.232830be -9*iran2() or
VNIC 1 =.465bbL3e-9*iran2(). These would be
coded in-line, and cost no more than would their (irrevers-
ible) inclusion in the subroutine itself.

Ii. SM?E NEW WWIATORS

From our point of view, a random number generator is just
a set of computer instructions that combine parts of a cur-
rent set of integers to provide a new integer to serve as the
output of the generator. This is usually done in a subpro-
gram; before a return to the main program, the current set is
updated to provide for the next iteration.

If only a few values are involved, the current set might
be designated, say a, b, c ‘I d, with a new n formed
from them, then “promotions”: a=bi b=ci c=d i d=n
form the new current set. If the number of elements in the
current set is more than perhaps 5 or 6, the current set is
maintained in a “circular” table, with pointers used to in-
dicate elements to be used in the generating procedure.

In principle, if there are r elements in the current set of
32-bit integers, it is possible to produce a sequence of 232r
integers before repetition-that is, before the initial (seed)
set reappears. We will provide numerous examples that at-
tain that period or come very close to it, or which attain the

118 COMPUTERS IN PHYSICS, VOL. 8, NO. 1, JAN/PEB 1994

maximal period that one fewer seed value would provide,
in a few cases where that simplifies the generating process.

The constraints we have in developing such examples
are: (1) The resulting computer operations must be simple
and fast, and (2) the underlying mathematics must be such
that we can rigorously establish the period.

Then, guided by experience and theory that suggest
combining two different generators produces an even better
one, we choose two different generators and combine
them-usually by addition or subtraction-to form the
composite generator, whose period will be the product of
the component periods, or close to it. (Periods often have a
few powers of 2 in common, reducing the lcm.)

Experience has shown better results when the two gen-
erators to be combined use very different arithmetic. Thus,
in the list below, we stick to combining one of the first two
generators, which use multiplication, with one of the last
14, all of which use addition or subtraction: in all, 28 gen-
erators. We have not yet tested all such combinations, but
those we have tried so far have passed all tests for unifor-
mity and independence.

Some candidates for combination generators

Approx.
No. Modulus Sequence period
(I) 232

(2) 2”’
(3) 2”’
(4) 2”
(5) 2”’
(6) 2”-69
(7) PI-69
(8) 2”‘-61
(9) 2”’ - 69
(IO) 2”‘-1
(11) 2”‘-5
(12) 2”‘-10
(13) 2s2-18
(14) 2”‘-5
(15) 232-5
(16) 2”2-5

x,=69069x,-,+oddconst
X,,=X,*-l*X,*-2
x,=x,,-* +x,,-2+ “C”
X,=X,,~l+X,,~~+“C”
Xn=Xn-2+X,-3+ “C”

X,t=Xn-3-X,*-1
xn=x,,-.4-X,-I

x,=2x,,-3-x,-2-x,-,
x,,=x,-~-~x,,-~
x,=x,,-4-x,-5- “C”

x,,=x,~~-x,,~‘o-“c”
“ >2 x,*=x,I-2-x”-5- c

X,=X,,-2-X,-3-“C 7,

x,,=x,,-t-2x,-z
x,*=x,*-1+x,-2--2x,-s
x~=~x,-~-x,-~-x,-~

286
262
294
2 93

2124
21%
2307
2160

295
264
295
2160

Comments: (l)-(2) use 32-bit multiplication [but (1) can
be implemented so as to avoid overflow-see below]. (3)-
(5) are add-with-carry and (lo)-(13) are subtract-with-
borrow generators, described in the next section. (4)-(11)
are for 31-bit integers and may be implemented in Fortran
or other languages that have only signed integers, while
(12)-(16) are best suited for machine language or C imple-
mentations, which provide for 32-bit positive (long) inte-
gers.

q . SEIJENCES SUCR AS x,,=x,,~,+x,~,+‘c” mod 28’

Several generators on the above list, with a c in quotes, are
add-with-carry (AWC) or subtract-with-borrow (SWB)
generators described elsewhere.4 They were develoy;$ to
provide immensely long periods, on the order of 2 or

more. But simpler versions may be used to provide candi-
dates suitable for the above list. Consider, for example, the
AWC generator (4): x~=x~-~+x~-~+“c” mod23’. The
c here is the carry bit, not a constant. It may change with
each call, depending on whether the addition modulo 231
produces overflow. An implementation works as follows:
with a current pair i,j and current c, form s = i+ j+ c. If
that sum exceeds the modulus, m = 2”‘, replace s by s-m
and set c= 1, else keep s and set c=O. Then promote:
i= j; j=s, output s, and the new i, j, c are ready for the
next generating process. We choose m = 231 for use with
Fortran compilers, while 232 is better for C implementations
or for machine language. With m = 232, such AWC genera-
tors are particularly well suited for machine language
implementation, since the carry bit is automatically set with
each addition.

Implementation for the SWB generators such as (12)
are similar, except that one does the subtraction and adds m
if the result is negative, with the new c 0 or 1 accordingly.
The essence of an implementation of (12) has modulus
m=232- 10, five current integer values, say,
u, w, x, y, z, and current c. The generating procedure is:
if y<u+c, then s=u+c-y-10 and c=l, else
s =y - u -c and c = 0. Then s is the output and promotions
provide the new set of five: u=w; w=x; x=y; y=s. The
period is 216’ for any five initial values, not all zero.

All are assumed 32-bit positive integers, routine for C
but not for Fortran. A Fortran implementation is possible
but too tricky; better is to use one such as (10) with 31-bit
integers, getting 2155 five-tuples out of any five 31-bit seeds
not all zero.

IV. THE 6ENERATOR mban

We now give details of a generator that combines se-
quences (1) and (6) from the list. For any choice of seed
value for (1) and any three seed values for (6), not all zero,
the composite period is 232(p2+p+ 1)>294, with
~=2~‘-69.

This is perhaps the fastest of the possible combina-
tions for Fortran, although not by much-all of them are
quite fast. Versions in C will be faster because one need not
accommodate Fortran’s quaint insistence that an integer
with leading bit 1 is negative.

Other combinations will have a similar structure, only
details on maintaining current values and arithmetic will
vary. The reader is invited to try his own combinations: As
with a Chinese restaurant menu, choose one from category
(l)-(2) and one from (3)-(13). Combine them and savor
the resulting combination.

We use the constant 1013904243 for sequence (l), but
any odd constant will do (as will almost any multiplier
congruent to 23 mod 8). If n is the current integer in this
sequence, the next n may be generated with the single in-
struction n=b9069 *n+LOL39Cttt243. For For those
compilers without a switch that permits the full modulo 232
arithmetic inherent in modern CPU’s, this can be effected
with shifts and masks-see below.

COMPUTERS IN PHYSICS, VOL. 8, NO. 1, JAN/FEB 1994 119

We suggest this implementation in Fortran

function mzran0
save i,j,k,n
data i,j,k,n/521288629,362436069,16163801,1131199299/
mrran=i-k
ifCmzran.lt.0) mzran=mzran+2147483579
i=j
j=k
k=mzran
n=69069*n+1013904243
mzran=mzran+n
return
entry mzranset(is,js,ks,ns)
i=l+iabs(is)
j=l+iabs(jS)
k=ltiabs(ks)
n=ns
mzranset=n
return
end

Implementing mzr an requires consideration of the way
that random number subroutines are likely to be used. As
mentioned in our comments on ran 2, we think the subrou-
tine should be invoked with an empty argument, as in mz -
ran(), and that an entry statement should be used to set
seed values, with default values provided to make usage
foolproof. And a random 32-bit integer should be returned,
leaving the option of random reals on (0,l) or (- 1,l) to the
user through statement functions such as
UNIC)=-5+.232830be-9*mzran() or
VNIC I=. YbLibbL3e-9*mzran(1 . This costs no more
and provides far greater versatility.

Default seed values for i, j, k, n are included, via a
data statement, for users who forget to, or do not care to, or
do not know how to, initialize by using a statement in the
main program such as m=mzranset(is, js, ks,
ns) ‘I with is 3 j s 7 ks 7 ns any four legal Fortran inte-
gers.

Note that m z r a n can be made to work without taking
advantage of 32-bit multiplication. Merely replace the seg-
ment n=bqLtbq*n by this segment:

It slows the routine down a bit, but still makes mzran
many times faster than r an2. If your compiler will not
allow overflow on 32-bit multiplication, substitute the
above segment. (The names of shift and “and” functions
may vary with some compilers.)

Note that m z r a n combines the congruential generator,
which produces 32-bit integers, with the generator (6),
which produces 31-bit integers. It takes the sum modulo
232. That might seem strange, but the reader should be able
to convince himself that: if x is a uniform random integer
on CO,..., a -l}, and y is an independent random integer
with any possible distribution, then x +y (or x -y) module a
is uniform on {O,...,a -1).

Because the periods of (1) and (6) are relatively prime,
the period of the composite mzran is 232@2+p+1),
which is about 294 or 102s.

V. AN -ATION N C

We now give an example of a combination generator in the
programming language C, in which we have 32-bit positive
integers. We combine (1) and (13) from the above list. The
period of (1) is 232 and that of (13) is (p3-p2)/3, about
29s, with p = 232 - 18. So the composite program, say m z -
ranL3, has period some 2’=. And, as with mzran and
other combinations of (l)-(2) with (3)-(16), it produces
eminently satisfactory random 32-bit integers.

We again use our recommended structure for a random
number generator: An empty argument list, default seed
values and an entry to set the seed values. Here is the
program:

typedef unsigned long int unlong;
unlong x=521288629, y=362436069, z=16163801, c=l,

n=1131199209;
ulong mzranl30
(long int s;

if (px+c) {s=y- (x+c) ; c=O;l
else { s=y-tx+c)-ia; c=l;)
x=y; y=z; return (z=s) + (n-69069*n+1013904243);

1;
void ra.n13set(ulong xx, ulong yy, ulong zz, long nn)
(x=x)(; y=yy; z=zz; n=nn; c=yxz;)

This program is a bit tricky to figure out, but potential users
can verify it by comparing with a more transparent version
that combines (1) and (13) with the specified seed values,
perhaps in double precision Fortran or in C with some re-
dundant but more expository code.

VI. OTRER coMtlNATIoNs

Many other combinations are possible and worth consider-
ing. For example, for years we used a generator called
COMBO as our absolutely-reliable-against-which-all-
others-are-compared generator. It combines sequence (2)
with the sequence x,=x,-t-x,- mod 230-35 (not
listed-its period is “only” some 2’). Over the years,
COMBO has resisted all efforts to refute its randomness,
and frequently a disparity between its results and those of
another generator have shown the inadequacy of the latter.
(Not all tests of randomness are based on problems for
which we know the underlying probabilities. For many
tough problems we can only compare results from different
generators-another reason for having a variety of genera-
tors available.)

Sequence (2) seems as good as (1) for combining with
one (or more) of those methods (3)-(16) based on addition
or subtraction. It has period 3X2’9 for any two odd seed
values, not both 1.

Sequence (1) has been widely-and successfully-
used by itself. It is, for example, the system generator on
Vax’s, and it, combined with a shift-register generator, pro-
vides the widely used McGill random number generator
Super Duper. The shift register used in Super Duper may
also be considered for use in combinations with one of
(3)-(12) that use addition or subtraction. Effected by the
two Fortran statements

n=ieor(n,ishft(n,-15)); n=ieor(n,ishft(n,l7))

its period is 232- 22’-21’+1. It has provided seemingly as
good combinations as (1) or (2) with (3)-(16), but we rend

120 COMPUTERS IN PHYSICS, VOL. 8, NO. 1, JAN/F’EB 1994

to prefer multiplication over shifts and exclusive-or’s for
scrambling bits. But if you want to try using it in place of
(1) or (2), you get another 14 combinations, making a total
of 42 from which to choose.

v1. -Y

We agree that the generator ran2, advocated by L’Ecuye?
and implemented in the Numerical Recipes column’ and
books,” is a good one, but suggest that it could be made
better, and simpler, by choosing different multipliers and
moduli for the two congruential generators it uses. We fur-
ther suggest that 32-bit generators are preferable (and cost
no more), and that the generator should be called with an
empty argument list, with seed values set by a separate
entry and default seed values provided.

Then we propose considering up to 28 different kinds
of new generators that are simpler than r an2 and have
much longer periods. Two exemplary programs, mzr an in
Fortran and mzr an 13 in C, are offered. They have our
recommended calling procedure, entry, and default values
for seeds. Furthermore, mzran may be easily modified to
make it meet the most restrictive requirements of portabil-
ity: no multiplications that exceed 32 bits.

Spurred by the challenge put forward by Press and

Teukolsky to refute the randomness of ran 2, we have sub-
jected it to our battery of tests DIEHARD, many of which
are described in Ref. 4. It has passed all of them, but so too
have mzran, mzranl3 and various other combinations of
sequences (1) or (2) with one from (3)-(16) in the above
list. Since all are simpler, faster, provide a greater variety of
random output and have longer periods, we recommend
readers consider adopting them-not necessarily to replace
ran& but perhaps to put it in perspective. Everyone who
does serious Monte Carlo research should have several
methods available.

REFERENCES

1. W. H. Press and S. A. Teukolsky, “Portable random number generators,” Com-
put. Phys. 6, 521-524 (1992).

2. P. L’Ecuyer, “Efficient and portable random number generators,” Commun.
ACM 31 (6), 742-774 (1988).

3. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in Fortran and Numerical Recipes in C (Cambridge U.P., Cambridge,
England, 1992), 2nd. ed.

4. G. Marsaglia, “A current view of random number generators. keynote address,”
Proceedings, Computer Science and Statistics: 16th Symposium on the Interface
(Elsevier, 1985).

5. G. Marsaglia and A. Zaman, “A new class of random number generators,” Ann.
Appl. Probability 1 (3), 462-480 (1991).

COMPUTERS IN PHYSICS, VOL. 8, NO. 1, JAN/FEB 1994 121

