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Introduction

Many problems in condensed matter physics deal with
sharp interfaces:

like:  
• solidification
• dendritic growth
• grain growth 
• solid-solid transformation
• magnetic domains
• fractureSolutions:

1) Boundary conditions at the interface.    Heavy to deal.....each time a new problem !!

2)    Atomistic models. Numerically heavy and how to cross to the macroscopic beh.?

Φ=0 Φ=1
Liquid Solid

3)     Diffuse interface technique (including phase field models) : 
                   regularization, additional field φ !!. 

Example: φ is an “external” degree of freedom
How to deal with its dynamics???



Motivation
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Phase field models for fracture:

‘‘Obtain a diffuse interface approach for the
propagation of cracks able to describe the properties

of ‘‘isotropic materials’’  independently of the underlying
numerical mesh without adding extra degrees of

freedom.’’

Our aim…….

Φ=0 
Φ=1

All previous have in common an external 
               degree of freedom !



Motivation

Need to supplement macroscopic transport physics with a
regularizing short scale physics in order to obtain a self-
consistent theoretical framework  for many problems: dendritic
solidification, viscous fingering, and many examples in fracture
physics as:

Yuse, Sano, Nature (1993)

1)Quasi-equilibrium cracks propagation under uniaxial loading or thermal gradient



Tectonic plates

Length scale ~ km

Motivation
2) Cracks due to shrinking: 
• changes in humidity concentration
• nonuniform temperature distribution

Picture from   Salar (salty surface) Uyuni,  Bolivia.

Length scale ~ meters

Triples points



Motivation

Bariloche
Argentina

3) Columnar fracturing in basaltic lava, sedimentary rocks…

Svartifoss,
 Skaftafell National Park, Iceland



Model
Fundamental variables:  ‘‘strain tensor components’’  

Displacements with
respect to the

unperturbated position
ui

0(r)

Attention!! Variables  e1 , e2
and e3 are not independent !

Textures in ferroelastic materials and martensites:
Lookman, S.R. Shenoy, Rasmussen, Saxena and Bishop, PRB (2003).
S.R.Shenoy etal., PRB (1999).

St Venant Condition

∇ x ( ∇ x  e )= 0
(∂2x + ∂2y) e1-(∂2x- ∂2y) e2- 2∂x∂y e3=0

For a 2D  geometry we choose:

e1 = ( uxx + uyy ) / 2  = (ε11 + ε22) / 2

uyy

Dilatation

uxx

e2 = (uxx - uyy ) / 2  = (ε11 - ε22) / 2  Deviatoric

-uyy

uxx

e3 = (uxy +   uyx )    =  ε12  =  ε21 Shear

uxy



1) For small ui(r) and small e should be…  : FL
0(ε)= Cijklεijεkl/2

FL
0(ε)= 2B e1

2 +  2µ  (e2
2 + e3

2) For isotropic material ( our first aim  ) 

Bulk and shear modulus

Model
Local free energy density F L  (e) ?

“ Elasticity ”

   2) How to account  for fracture at large strains ?

•  Two crucial ingredients:

   g

g(rij) = 0  Preexistent cracks
g(rij) ~ 1  Random inhomogeneities

Lim F L  (ε) = f0  (related with the crack energy)
 ε ∞

ε

FL (ε)

f0 =4

f0 =2

Rotational Invariance

“ A crack is nucleating when F L0  (ε) ~ f0 ”



Model

F∇(ε) = ∑  αi ( ∇ ei ) 2
        i=1,2,3

3) How to avoid influence from the numerical mesh? ‘‘ REGULARIZATION ’’

α2=α3 choosing (rot. invariance)

F∇(ε) = ∑  αi ( ∇ ei ) 2  s(ei)
        i=1,2,3

s(ei)=(1+(FL
0/f1)κ)-1

Cutoff 

f1=2

 f1=24

ei

s

Sharpness
κ =1,1.5,2

F   =             FL              +          F∇

       = FL
0(e)/[1+F

L
0(e)/f0] + ∑  αi ( ∇ ei ) 2  s(ei)

                                  i=1,2,3
      Elasticity + fracture           REGULARIZATION

Finally ...the full free energy density is defined:

 

Like a G.Landau
 free energy: 

with order parameter, 
own elastic

 deformations

Smooth interfaces, ‘a way to soften  variables’



Model: equations of motion
Including a kinetic term, T~ρ(du/dt)2/2  the eqs of motion in Fourier space, 
where Ei are Fourier transforms of ei: 

    -Periodic boundary conditions

    -Square and rectangular mesh

    -System sizes: 128x128, 512x512, 768x768, 768x256…

-Overdamped regime

Molecular Dynamics simulations:

Inertial
term

Potential
Force

Ai = phen. damping cte

Dissipation

St. Venant condition in FS:
(kx

2+ky
2)E1 - (kx

2-ky
2)E2 - 2kx ky E3= 0

Lagrange mult.

Constraint:
St. Venant



Convalidation of the model: “Griffith law”

I III II I 

Loadings  modes: I, II, III

Tip

Griffith law (GL) ? Under uniform loading (Mode I).......

σ∞

l

GL            For  σ > σ c   breaks and

 σc ~ l 
-β =  l -0.5

  

Deduced just considering :
         elastic energy + crack energy

“all models for fracture should fullfill it”



Griffith criterion:  results 

σc

l (initial crack lenght)

Fitting β=0.498 ± 0.011

 σc ~ l -β ,    β = ??

96x256
192x512

Model without regularization, αi=0
                                              F = FL + F∇ = FL

0(e)/[1+FL
0(e)/f0]

Very nice GL....but it is not an isotropic model !! 



Model with regularization, αi=0.25, and f1  →  ∞ (without cutoff)

σc

 l (initial crack lenght)

Fitting β=0.4  ± 0.01
192x512

 σc ~ l -β ,    β = ??

Griffith criterion:  results

                                F = FL + F∇ = FL
0(e)/[1+FL

0(e)/f0] + ∑  αi ( ∇ ei )2  s(ei)
                                                                  i=1,2,3

β < 0.5 !! 



                                F = FL + F∇ = FL
0(e)/[1+FL

0(e)/f0] + ∑  αi ( ∇ ei )2  s(ei)
                                                                  i=1,2,3

Model with regularization, αi=0.25 + finite f1  ( cutoff)

Griffith criterion:  results

Dilatation

Deviatoric

Shear
Nice scaling!! 

Then... a cutoff is  necessary



Uniform loading (Mode I): σ remote stress

σ > σc

Crack propagation

Results in well controlled geometries

θ



Results in well controlled geometries
Uniform loading: σ remote stress

σ > σc
Without regularization terms !!

Typical drawback in many discrete models for fracture !!
            Clear effects of underlying numerical mesh....... 



Results including REGULARIZATION

Uniform loading: 

 σ remote stress:

σ > σc







Critical remote stress dependence on angle
Regularization, α

Strong dependence
 on the crack 

orientation

REGULARIZATION  critical stress independent of the angle! 
We succeed obtaining an isotropic model !!



Equal skew-parallel cracks problem

A

A B

B

2b

2h

2a

2a



Equal skew-parallel cracks problem

S. Ciliberto’s  Group experiment, Universite de Lyon, France. Cond-Mat July 2008. 
Loaded 2d
brittle sample
 of fax paper 
sheet (Alrey)
 with a tensile 
Machine.





Parallel cracks problem

Crack propagation:
   snapshots vs time.



The  diffuse interface approach for brittle fracture
 is able to reproduce well stablished facts in

fracture physics
and REGULARIZATION makes

results insensitive to the numerical
 mesh used “fact not at all trivial in crack modeling”.

PRE 71, 036110 (2005).

Conclusions
Advantages of this model for brittle fracture:
 § Does not include additional degrees of freedom: the full set of variables
 are the components of the strain tensor. 
 § Well defined Newtonian dynamics (plus damping).
 § Largely reduced number of uncontrolled parameters.
 § Information of ‘existence and direction’ of fracture in a single cell of a 
computational mesh.
 § Rotational invariant theory.
   Summarizing…..



Applications and future work

Quasi-static crack propagation problems:
                            1) Systems under pression.
                            2) Systems under thermal gradient. 
                            3) Minimum cracks energy configuration
  (non uniform temperature distribution).  

T1
T2 f(T)

T1





Crack maturation : Model applied to a thin layer elastically attached
                     to a substrate +  disorder 

Applications

PRE 69, 056212 (2004)

Fragmentation: first stage of evolution Maturation: at longer times
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$$ Fundings from ICTP & UNESCO.

Dynamics of fracture : sound emission, bifurcation, cracks
instabilities, …..

          Preliminary simulations of the complete dynamics
(underdamped or inertial) show indeed well known effects as
crack bifurcation and crack oscillations.

 Straightforward extension to 3D problems.

Applications and future work








