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Introduction

Many problems in condensed matter physics deal with

. : e

sharp interfaces:

- fracture

Solutions:
1) Boundary conditions at the interface. Heavy to deal.....each time a new problem !

2) Atomistic models. Numerically heavy and how to cross to the macroscopic beh.?

Diffuse interface technique (including phase field models) :
regularization, additional field ¢ I,
Example: | Liquid " Solid ¢ is an “"external” degree of freedom

e=0 -1 How to deal with its dynamics???
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Motivation

Phase field models for fracture: D=1

I. S. Aranson, V. A. Kalatsky, and V. M. Vinokur, Phys. Rev.Lett. 85, 118 (2000).
A. Karma, D. A. Kessler, and H. Levine, Phys. Rev. Lett. 87, 045501 (2001).

L. O. Eastgate, J. P. Sethna, M. Rauscher, T. Cretegny, C.S. Chen, and C. R. Myers, Phys.
Rev. E 65, 036117 (2002).
All previous have in common an external

I
Oour aim degree of freedom |

"Obtain a diffuse interface approach for the
propagation of cracks able to describe the properties
of "isotropic materials” independently of the underlying
numerical mesh adding extra degrees of
freedom.”




Motivation

Need to supplement macroscopic transport physics with a

in order to obtain a self-
consistent theoretical framework for many problems: dendritic
solidification, viscous fingering, and many examples in

Yuse, Sano, Nature (1993)




Motivation
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Picture from Salar (salty surface) Uyuni, Bolivia. Tectonic plates

Length scale ~ meters Length scale ~ km




Motivation

Bariloche
Argentina
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Skaftafell National Park, Iceland Elatssa’

L




Fundamental variables:

For a 2D geometry we choose:

er=(Uy+u, )/ 2 = (g, +8)/2

Attentionll Variables e , e, Vx(Vxe)=0
and ez are not independent ! (02, + azy) e, -(02,- azy) e,- Zaxay e;=0

N Textures in ferroelastic materials and martensites:
St Venant Condition Lookman, S.R. Shenoy, Rasmussen, Saxena and Bishop, PRB (2003).
S.R.Shenoy etal., PRB (1999).




Model

Local free energy density F, (e) ?

For small and small = should be... : ORI — " Elasticity

Bulk and shear modulus

For isotropic material ( our first aim )

« Two crucial ingredients:

How to account for fracture at large strains ?

g F(e)

B = T B e /)

g(E)=0 D Preexistenteracks €
g(r;;) ~ 1 = Random inhomogeneities
Lim F | (¢) = f, (related with the crack energy)
=0




Model

How to avoid influence from the numerical mesh?

Fole) =2 o;(Ve)? choosing (rot. invariance)

i=1,2,3

Fo(e) =2 a; (Ve )? s(e) s(e))=(1+(F %/f)*)!

i=1,2,3

}

Smooth interfaces, ‘a way to soften variables'

Finally ...the full free energy density is defined:

FL * Like a 6.Landau
FLO(C)/[I"'FLO(C)/fO] + 2 Q; (V e; ) 2 s(ei) free energy:
i=1.2.3 with order parameter,
own elastic

Elasticity + fracture REGULARIZATION deformations




Model: equations of motion

Including a kinetic term, the

Inertial

Molecular Dynamics simulations:

Overdamped regime St. Venant condition in FS:
(k2+k 2, - (k2-k 2)E;, - 2k, k E,= 0

-Periodic boundary conditions
-Square and rectangular mesh

-System sizes: 128x128, 512x512, 768x768, 768x256...




Convalidation of the model: "Griffith law"

Loadings modes: I, IT, ITI

?

Griffith law (6L) ? Under uniform loading (Mode I)

1

GL # For G > O . breaksand

=) o~ | B= |05

Deduced just considering :
elastic energy + crack energy

“all models for fracture should fullfill it"




Griffith criterion: results

Model without regularization, o,=0
-

% 96x256
192x512
Fitting p=0.498 + 0.011

| (initial crack lenght) 100
Very nice GL....but it is not an isotropic model !!




Griffith criterion: results

Model regularization, 0,=0.25, and f; — o (without cutoff)

g < 0.5]ll

' P 192x51
Fitting 3=0.4 )+ 0.01
0.01 - - -

19" (initial crack lenght) 100




Griffith

criterion: results

Model regularization, 0.=0.25 + finite f, ( cutoff)
‘[ Dilatation
— a = 0.5 o 30
2 N
[ n 20
:j = -
. <
S b---- R~ R L HHKFFK A 1
— 0
10 -40
S, | © B =0.402F 0009, f - o
Nice scalingl!
1 L !

Then... a cutoff is necessary

L/6

100




Results in well controlled geometries

Uniform loading (Mode I): G remote stress

o > O,

Crack propagation




Results in well controlled geometries

Uniform loading: O remote stress

o> 0,

regularization terms !!

Typical drawback in many discrete models for fracture !!
Clear effects of underlying numerical mesh




Results including REGULARIZATION

Uniform loading:

O remote stress:

o> 0,










Critical remote stress dependence on angle

TTTTTTTT

Strong dependence
on the crack
orientation
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Equal skew-parallel cracks problem




Equal skew-parallel cracks problem

Loaded 2d
brittle sample
of fax paper
sheet (Alrey)
with a tensile
Machine.







| Pardllel cracks problem

Crack propagation:
snapshots vs time.




Conclusions

§ Information of of fracture in a single cell of a
computational mesh.

§ Rotational invariant theory.
Summarizing

The diffuse interface approach for brittle fracture
is able to reproduce well stablished facts in
fracture physics
and makes
results insensitive to the numerical

mesh used "fact not at all trivial in crack modeling”.
PRE 71, 036110 (2005).




Applications and future work

1) Systems under pression.

2) Systems under thermal gradient.

3) Minimum cracks energy configuration
(non uniform temperature distribution).
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PRE 69, 056212 (2004)

Applications
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Applications and future work

sound emission, bifurcation, cracks
instabilities,

Preliminary simulations of the complete dynamics
(underdamped or inertial) show indeed well known effects as
crack bifurcation and crack oscillations.
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