También el potencial
es como una superposición de dos escalones, por lo cual ya conocemos bastante acerca de las soluciones. Antes de avanzar conviene observar que siempre podemos aprovechar las simetrías del problema. Por ejemplo, en este caso el potencial es par, es decir, el hamiltoniano
|
Si es par, hermitiano y no degenerado comparte autovectores con
, es decir sus autofunciones tienen paridad definida. En el caso del pozo de potencial,
es par
Otra propiedad importante acerca de las soluciones se desprende del hecho de que es hermitiano, pues al conjugar la ecuación de Schrödinger estacionaria obtenemos
Volviendo al caso del pozo de potencial, podemos analizar por separado las soluciones pares e impares. Aprovechando además lo que sabíamos de otros potenciales constantes a tramos, y teniendo presente que tanto
Vemos que un análisis cualitativo permite predecir muchas cosas acerca de los autoestados para nuestro sistema. En general, para un potencial cualquiera como el de la figura, los estados con
Por encima de ese valor mínimo, las soluciones para la ecuación de Schrödinger independiente de |
luciones confinadas a una región finita del espacio; a partir de la teoría para ecuaciones en derivadas parciales, sabemos que estas soluciones corresponden a un conjunto discreto de energías: el espectro correspondiente a estados ligados es discreto y no degenerado. Por otro lado, el estado fundamental o de mínima energía no tendrá nodos (ceros de ); y como en el ejemplo del pozo de potencial, a medida que crece la energía aparecerá un número mayor de nodos.
Los estados no ligados en cambio presentan un espectro continuo. Esta será la situación cuando
: en este caso el movimiento se dará en un “semi-infinito”, hacia valores negativos de
, si
y no acotado en ambas direcciones cuando
. Además habrá posibles reforzamientos en las reflexiones o transmisiones impuestas por cada variación en
; en el caso de la onda transmitida estos reforzamientos dan origen a las llamadas resonancias, y el caso del pozo de potencial es un excelente ejemplo de esto. Para analizarlo, volvamos entonces al análisis del caso
, al que habitualmente se alude como “dispersión”, ya que parte de la onda incidente es reflejada por esta estructura de potencial y otra parte la atraviesa. Para estos estados no ligados podemos aprovechar la solución que ya teníamos para la barrera de potencial cambiando el cero de las energías e invirtiendo el potencial. Nuevamente, para el caso de una onda incidente desde la izquierda (tomando nuestro coeficiente
), para el coeficiente de transmisión obtenemos
Un caso límite de un pozo de potencial es
|
y consiste en una aproximación utilizada frecuentemente cuando la región afectada por el potencial es sumamente reducida. El análisis previo sigue valiendo, aunque en este caso el salto que tendrá ya no será finito, lo que implica que
presentará una discontinuidad. Claramente las soluciones para este problema siguen siendo ondas planas, o exponenciales decrecientes si hay estados ligados, y para ajustar el empalme en
reescribimos la ecuación de Schrödinger independiente del tiempo
Gustavo Castellano 29/04/2025